Extract Variable Importance from a Maxent Model Object
Source:R/eco_maxent.R
maxent_variable_importance.Rd
This function extracts the percent contribution and permutation importance
for each variable from a fitted Maxent model (class "MaxEnt") as returned by
dismo::maxent()
. It returns a tibble with variables and their respective
importance metrics.
Arguments
- model
A fitted Maxent model object of class "MaxEnt" (from
dismo::maxent()
.
Value
A tibble with columns:
- variable
Variable name (character).
- percent_contribution
Percent contribution of the variable (numeric).
- permutation_importance
Permutation importance of the variable (numeric).
Examples
require(ecokit)
ecokit::load_packages(fs, dismo, rJava, raster)
# fit a Maxent model
if (dismo::maxent(silent = TRUE)) {
predictors <- list.files(
path = fs::path(
system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE) %>%
raster::stack()
occurence <- fs::path(
system.file(package = "dismo"), "ex", "bradypus.csv") %>%
read.table(header = TRUE, sep = ",") %>%
dplyr::select(-1)
# fit model, biome is a categorical variable
me <- maxent(predictors, occurence, factors='biome')
maxent_variable_importance(me)
}
#> # A tibble: 9 × 3
#> variable percent_contribution permutation_importance
#> <chr> <dbl> <dbl>
#> 1 bio1 2.89 3.59
#> 2 bio12 1.69 12.8
#> 3 bio16 10.1 2.11
#> 4 bio17 3.57 4.29
#> 5 bio5 3.53 5.36
#> 6 bio6 3.00 3.19
#> 7 bio7 28.2 54.6
#> 8 bio8 0.303 2.40
#> 9 biome 46.8 11.6