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Testing the accuracy of species distribution models using species 
records from a new field survey
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Species distribution models are a very popular tool in ecology and biogeography and have great potential to help direct 
conservation efforts. Models are traditionally tested by using half the original species records to build the model and 
half to evaluate it. However, this can lead to overly optimistic estimates of model accuracy, particularly when there are 
systematic biases in the data. It is better to evaluate models using independent data. This study used independent species 
records from a new to survey to provide a more rigorous evaluation of distribution-model accuracy. Distribution models 
were built for reptile, amphibian, butterfly and mammal species. The accuracy of these models was evaluated using the 
traditional approach of partitioning the original species records into model-building and model-evaluating datasets, and 
using independent records collected during a new field survey of 21 previously unvisited sites in diverse habitat types. We 
tested whether variation in distribution-model accuracy among species could be explained by species detectability, range 
size, number of records used to build the models, and body size. Estimates of accuracy derived using the new species records 
correlated positively with estimates generated using the traditional data-partitioning approach, but were on average 22% 
lower. Model accuracy was negatively related to range size and number of records used to build the models, and positively 
related to the body size of butterflies. There was no clear relationship between species detectability and model accuracy. The 
field data generally validated the species distribution models. However, there was considerable variation in model accuracy 
among species, some of which could be explained by the characteristics of species.
Species distribution models have great potential as tools for 
conservation. They relate a set of records of the occurrence 
of a species to a set of variables describing relevant aspects 
of the environment in order to predict its distribution over 
the whole of the study area in question (reviewed by Wintle  
et al. 2005).

There is a vast amount of data on the distributions of 
species in museums, natural history collections and the liter-
ature (Graham et al. 2004). However, there are several limi-
tations associated with data from these sources. First, records  
are often accompanied by an imprecise description of the 
locality from which they were taken. This translates into  
poor locational accuracy when the record is georeferenced (i.e. 
when it is assigned geographical coordinates, Graham et al.  
2004). The effect of locational error in the species records on 
the accuracy of distributional models is generally low, but 
varies among different types of model (Graham et al. 2008).

Second, museum data are often biased. Such bias could 
be: 1) spatial – towards areas to which it is easy for scientists 
to gain access, or towards areas that are biologically interest-
ing; 2) temporal – towards time periods when collecting was 
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more frequent; or 3) taxonomic – towards species that are 
easy to detect or that are of more interest to the collectors 
(Soberón 1999, Hijmans et al. 2000, Reddy and Dávalos 
2003).

The third major problem with data from museums and 
literature sources is that there are rarely data document-
ing places where the species is known not to exist (absence 
records) (Graham et al. 2004). There are modelling tech-
niques designed to be used with datasets that consist only of 
presence records, such as climate envelope approaches and 
techniques that model the presences with reference to the 
background environmental conditions (Wintle et al. 2005). 
However, several of the most popular modelling approaches, 
such as generalized linear models (GLMs) and generalized 
additive models (GAMs), can only be used with both pres-
ence and absence data. A commonly-used solution to this 
problem is to generate random ‘pseudo-absence’ data in grid 
cells without presence records (Ferrier and Watson 1997). 
One obvious problem with using pseudo–absence data is that 
some absences are likely to be found in areas that are suitable 
for, and even inhabited by, the species (Graham et al. 2004).  



Of course, recorded absence of species may also prove to 
be erroneous. Many species are very difficult to detect and 
it may take many visits to a site before species absence can 
be inferred with any degree of confidence (Kéry 2002,  
MacKenzie et al. 2002). Given accurate species records from 
a well-designed survey, models built with only presence 
records have been shown to perform as well as models built 
with both presences and absences (Wintle et al. 2005) and 
may present the safest option when there is uncertainty over 
the reliability of absence data.

Data from museums, collections and the literature are too 
valuable a source of data to ignore. However, given the poten-
tial biases and inaccuracies associated with them, it is par-
ticularly important to test the accuracy of model predictions. 
The simplest way to test the accuracy of a species distribution 
model is to test its ability to predict correctly the data used 
to build it in the first place (Fielding and Bell 1997). This 
is effectively a measure of goodness-of-fit of the model. The 
main drawback of this approach is that a model can fit the 
data used to build it very well without capturing the species’ 
real response to the environmental variables (a phenomenon 
known as overfitting), and this method of model evaluation 
tends to lead to over-optimistic measures of model accuracy 
(Chatfield 1995). A better approach is to partition the data 
in some way, building the model with part of the dataset and 
evaluating it against the remainder (Fielding and Bell 1997). 
This is the approach taken by most studies (Hernandez et al. 
2008, Franklin et al. 2009). A problem with data-partition-
ing approaches is that if the same bias in the species data is 
present in all partitions, then the model may be biased and 
the estimate of model accuracy inflated (Chatfield 1995). 
Ideally models should be evaluated using new, independent 
data on species occurrence (Chatfield 1995). With the wide 
availability of global positioning systems (GPS), records can 
be assigned geographical coordinates on collection, eliminat-
ing the problem of locational errors. Bias should be reduced 
as much as possible, particularly bias in environmental space 
(Wintle et al. 2005). Few studies have used independent 
data to validate models because collecting such data can be 
impractical, time-consuming and costly (Wintle et al. 2005, 
but see Loyn et al. 2001, Elith 2002, Ferrier et al. 2002, Elith 
et al. 2006, Williams et al. 2009). To the best of our knowl-
edge only one study, on Mexican birds (Feria and Peterson 
2002), has used new, independent records to test the accu-
racy of distribution models based on museum data. Given 
the potential limitations with records from museums, it is 
particularly important that the accuracy of models based on 
them are evaluated rigorously. We used independent records 
to test the accuracy of distribution models for a variety of 
species in three separate taxonomic groups.

Even if one is confident of a lack of bias in the data, dif-
ferent kinds of species may be more or less suited to the 
model-building process. There have been attempts to assess 
differences among species in the accuracy of their distribu-
tion models (Kadmon et al. 2003, Berg et al. 2004, Seoane 
et al. 2005, Hernandez et al. 2006, Newbold et al. 2009b). 
These studies have often found that species that are more 
narrowly distributed produce more accurate distribution 
models, possibly because small-ranged species have better-
defined habitat requirements and tend to inhabit a greater 
proportion of the suitable environment, or because in species 
with larger ranges, populations show local adaptation to the 
environment in different areas (Stockwell and Peterson 2002, 
Brotons et al. 2004, Segurado and Araújo 2004, Hernandez  
et al. 2006, Newbold et al. 2009b). On the other hand, 
effects of range size could be a statistical artefact associated 
with the use of pseudo-absence data (Lobo et al. 2008).

Species that are easier to detect are likely to have more 
complete occurrence data. This may result in more accurate 
distribution models for these species (Seoane et al. 2005). 
For example, Pöyry et al. (2008) showed that the accuracy 
of distribution models for butterflies was positively related 
to wingspan, possibly owing to differences in detectability 
during surveys.

In this study, we modelled the distributions of Egyptian 
butterfly, mammal, reptile and amphibian species using 
records from museums, collections and the literature, pre-
senting a rare test of their accuracy using new, indepen-
dently-collected survey data as well as a test using the more 
traditional data-partitioning method. It was not possible to 
collect new species records systematically or randomly in 
the time available because of the remoteness and inacces-
sibility of many parts of Egypt, but the records were com-
pletely independent of the data used to build the models, 
were designed to be representative of as many habitat types 
as possible, given the constraints imposed by the logistics 
of sampling in a remote and hostile environment, and were 
georeferenced using a GPS and so had negligible locational 
error. We used the new survey data, which contain both 
presence and absence records, to test whether a negative 
effect of species range size on model accuracy persists in the 
absence of statistical artefacts. We also tested whether model 
accuracy is related to species detectability and body size  
(of butterflies).

Data and methods

Distribution models were compiled for Egyptian butterfly, 
mammal, reptile and amphibian species using Maxent ver. 
3.1.0 (Phillips et al. 2006). Maxent uses a machine-learning 
process to produce a model where the frequency distribution 
of modelled probabilities is as close to uniform as possible, 
with the constraint that the expected value of each environ-
mental variable (the sum, across all grid cells, of the product 
of the probability of occurrence and the value of the environ-
mental variable) must equal the mean value at the presence 
points (the empirical average). To prevent overfitting a pro-
cess called regularization is adopted, relaxing this constraint 
such that the expected value of each environmental variable 
may fall within a defined margin around the empirical aver-
age (Dudík et al. 2004). Maxent is particularly suited to use 
with museum data, because it designed to deal with datasets 
consisting only of presence records. The environmental con-
ditions in a sample of cells from throughout the whole study 
area is used for comparison with the environmental condi-
tions in cells with species presence records in. 

The species data used to build the models (hereafter 
referred to as the original species records) were taken from 
the database complied as part of Egypt’s BioMAP project 
(,www.biomapegypt.org. for more details). Records were 
taken from museum and personal collections, and from 
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the literature (Osborn and Helmy 1980, Larsen 1990). 
The identification of all extant specimens was checked by 
experts (Samy Zalat, Sherif Baha-El-Din, Francis Gilbert, 
Dr Mohammad Basuony, Al Azhar Univ., Cairo), according 
to the latest taxonomic opinion (Larsen 1990, Wilson and 
Reeder 2005, Baha El Din 2006). All records were mapped 
as accurately as possible using a gazetteer developed by the 
BioMAP project. We estimated the maximum error asso-
ciated with each sampling location using the point radius 
method (Wieczorek et al. 2004) and removed records from 
highly inaccurate localities. Given positive spatial autocor-
relation in the environmental variables, a moderate degree 
of inaccuracy in the location of species records probably 
does not have a large effect on model accuracy (Graham  
et al. 2008). The number of records available for each species 
ranged from 10 to 412 (median 5 58); most records were 
made in the second half of the 20th century (Newbold et al. 
2009a).

The environmental variables used in the models consisted 
of climate and habitat variables. The climate variables were 
taken from the WorldClim ver. 1.4 dataset (Hijmans et al. 
2005). This dataset includes 20 variables describing alti-
tude, temperature and precipitation (Supplementary mate-
rial Appendix 1). The habitat variable used was a geological 
habitat classification with 11 categories (sea, littoral coastal 
land, cultivated land, sand dune, wadi, metamorphic rock, 
igneous rock, gravel, serir sand sheet, sabkha and sedimen-
tary rock). This map was compiled using satellite imagery, 
and was verified by extensive ground-truthing (A. Hassan 
unpubl.). Using 20 environmental variables might cause the 
models to be overfitted (Chatfield 1995). However, the Max-
ent model uses a process called regularization to reduce the 
chance of overfitting and previous studies have shown that it 
can produce accurate models with small numbers of species 
records and similar numbers of environmental variables to 
our study (Wisz et al. 2008). To test whether this was the 
case in our study, we built a separate set of distribution mod-
els using habitat and three principal component axes based 
on the climatic variables. Models developed using the two 
sets of variables were very similar (at 5000 random points 
in Egypt modelled probabilities of occurrence correlated 
positively – Spearman’s rank correlation: mean rs 5 0.798 6 
0.02) and were not significantly different in accuracy (Wil-
coxon’s matched-pairs test: p 5 0.122).

To create a second set of species data (hereafter referred to 
as the independent species records) with which to evaluate 
the distribution models, we conducted a survey of butterflies, 
mammals, reptiles and amphibians in Egypt in the summers 
(May–July) of 2007 and 2008. The reptile, amphibian and 
mammal species surveyed are active throughout the sum-
mer months. The flight periods of all of the butterfly spe-
cies surveyed encompassed the whole period of sampling. 
The new records were not used to build distribution models, 
only to evaluate them. The new data were biased towards 
roads. The terrain in Egypt makes it almost impossible to 
sample completely randomly, with many areas situated hun-
dreds of kilometres from the nearest road. We minimized 
bias in environmental space as much as possible by selecting 
sites that covered: (1) as large a geographical area as possible; 
and (2) as many different habitat types as possible, defined  
using a geological habitat map (A. Hassan unpubl.) and 
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a vegetation land cover map, derived using data from the 
Advanced Very High Resolution Radiometer (Hansen  
et al. 2000). At each site we performed four 1-km walking 
transects at different times of day (early morning, late morn-
ing, late afternoon, evening), paced to take approximately 
an hour and a half each. At the same time, some members 
of the expedition actively searched for species in the area 
surrounding the start point of the transect. Transects were 
located such that they sampled all the major habitat types 
present at each site. A species was recorded as being present if 
it was observed at least once, and absent otherwise. Twenty-
one sites were surveyed in this way (Fig. 1, Supplementary 
material Appendix 1). In addition to records from the fully-
surveyed sites, we also included incidental observations of 
species from 13 other localities (Fig. 1, Supplementary mate-
rial Appendix 1). Data from these sites consisted of records 
of species presence only, because we did not carry out repli-
cate transects at these sites and thus could not infer species 
absence. Almost all new sites were situated at least 1 km from 
sites with records in the original dataset (Fig. 1). All fully-
surveyed sites were at least three km from the nearest other 
site, and all but four were at least ten km from the nearest 
other site. Including locations with incidental records, dis-
tances among sites were sometimes much smaller; four sites 
were less than one km from the nearest other site and 15 sites 
were less than ten km from the nearest site. Butterflies were 
sampled by visual searching and sweep netting, reptiles and 
amphibians by visual scans and active searches, and mam-
mals mainly by checking for tracks and signs, although sight-
ings of species were also noted. Sixty species were recorded 
in total, 34 of which were recorded at least twice: 20 reptiles 
and amphibians, ten butterflies and four mammals (Supple-
mentary material Appendix 1).

Imperfect detectability of species is likely to have an impact 
on the reliability of data describing species absence from 
surveys such as ours (Kéry 2002, MacKenzie et al. 2002).  
Figure 1. Sites with reptile, amphibian, butterfly and mammal 
records in the BioMAP database (grey crosses and asterisks), and 
sites that were sampled during the new survey (black triangles).



We modelled the detectability of species in our new sur-
vey data, following MacKenzie et al. (2002). The four 
transects undertaken at each site were treated as inde-
pendent visits (n1, n2, n3, and n4). The likelihood (L) of 
obtaining a particular pattern of occurrence for a spe-
cies across all four transects at all fully-surveyed sites is:
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where ψ is the probability that a species occurs at a given site, 
p is the probability that the species is detected during one 
transect given that it occurs at the site, t is the transect num-
ber, n. is the number of sites where the species was recorded in 
at least one transect, and N is the total number of sites visited 
(MacKenzie et al. 2002). The parameters p and ψ were esti-
mated using a maximum likelihood approach with the pack-
age ‘mle’ in R (R Development Core Team 2004). Upper and 
lower bounds of 0.0001 and 0.9999 respectively were set for 
both parameters. The model has been shown to be reason-
ably robust to sample sizes as small as those encountered here 
(Wintle et al. 2004). The model assumes that occurrence 
and detection probabilities are constant across sites, which is 
almost certainly not true. The modelled probabilities should 
therefore be considered rough estimates to gauge the reliabil-
ity of the occurrence data and not as accurate estimates of the 
probabilities of detection and occurrence.

The distribution models were evaluated using three dif-
ferent sets of data. First, using partitioned data, whereby 
the original species records were divided randomly before 
modelling – half for model building and half for model 
evaluation. Models were evaluated using these reserved 
presence records and 2500 pseudo-absences (Ferrier and  
Watson 1997), drawn randomly from cells that lacked a 
record of the species in question. Second, using the inde-
pendent species presence records and 2500 pseudo-absences, 
generated as before. Third, using the independent presence 
and absence records. Model accuracy was measured using the 
AUC statistic (Fielding and Bell 1997). The receiver operat-
ing characteristic curve is a plot of the proportion of presence 
records correctly predicted present (sensitivity) against the 
proportion of absence records incorrectly predicted present 
(commission) for a range of thresholds used to divide pre-
dicted presence from predicted absence. The area under the 
curve (AUC) measures the ability of the model to discrimi-
nate recorded presences from recorded absences (Fielding  
and Bell 1997). An AUC value of 1 indicates perfect discrimi-
nation and an AUC value of 0.5 indicates a model that is no 
better than random. Estimated accuracy according to AUC 
values was compared among the three approaches. We cor-
related estimates of accuracy made by partitioning the original 
species records with estimates made using the independent 
records, to test whether models were ranked similarly. To pro-
vide an alternative measure of accuracy to the AUC statistic, 
the models were also tested against the independent pres-
ence and absence records using the slope of the relationship 
between model predicted probability and species occurrence 
(presence or absence), fitted using a generalized linear model 
with binomial errors (McCullagh and Nelder 1989).

We tested a number of factors that may explain varia-
tion in model accuracy (measured using the independent 
presence and absence records) among species: (1) estimated 
species detectability (2) range size in Egypt; (3) number of 
presence records used to build the models; and (4) taxonomic 
group (mammals, butterflies, or reptiles and amphibians). 
The proportion of Egypt’s land area predicted by the distri-
bution models to be occupied was used as an index of range 
size. To calculate this, we converted the continuous predic-
tion of probability of occurrence into a binary prediction of 
presence or absence, by assigning a threshold probability of 
occurrence to the model for each species. The threshold was 
set such that 95% of the presence records used to build the 
models were predicted correctly as being present (Pearson  
et al. 2004).

The effect of estimated species detectability on distribution- 
model accuracy was tested by a simple correlation test, 
because detectability could not be estimated for species that 
were not recorded during the walking transects. As an addi-
tional test of the effect of estimated species detectability, we 
also correlated butterfly wingspans (wing-tip to wing-tip; 
Gilbert and Zalat 2007) with model accuracy. The remain-
ing factors were tested using generalized linear models with 
normal errors. AUC values were entered as the dependent 
variable, taxonomic group as a factor, and predicted range 
size and number of presence records used to build the model 
as covariates. We used a model selection method based on the 
approach recommended by Burnham and Anderson (2002). 
We built a global model with all terms, and candidate models 
with every combination of terms. AIC scores were extracted 
for each model and the difference between a model’s AIC 
value and the lowest value of all models (the AIC difference, 
Δi) was calculated. Model weight was calculated using the 
following formula (Burnham and Anderson 2002):
where Δi is the AIC difference of the model in question and 
Δrs are the AIC differences of the other models. The relative 
importance of each variable was assessed by summing the 
AIC weights of all candidate models containing it (Burnham 
and Anderson 2002), hereafter referred to as ‘sum of AIC 
weights’.

Results

Estimates of the probability of detecting a species in a single 
transect (p) ranged from less than 0.001 to approximately 
0.75 (Table 1). For butterflies, the migratory species Vanessa 
atalanta and Vanessa cardui, and the skipper Pelopidas thrax 
had low probabilities of detection, but most species were rel-
atively easily detected. Mammals generally had much lower 
probabilities of detection than butterflies; the gazelle Gazella 
dorcas was an exception because its presence could be reli-
ably ascertained by tracks and faeces. Reptiles and amphib-
ians were highly variable in their estimated detectability. The 
snakes and the chamaeleon Chamaeleo africanus had very 
low probabilities of detection, while the lizards, skinks and 
amphibians generally had higher probabilities. Estimates of 
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Species ψ p

Reptiles and amphibians
 Acanthodactylus boskianus 0.466 0.508
 Acanthodactylus scutellatus 0.429 0.112
 Cerastes cerastes 0.413 0.019
 Chamaeleo africanus 0.413 0.019
 Malpolon monspessulanus 0.420 ,0.001
 Mesalina guttulata 0.413 0.019
 Natrix tessellata 0.413 0.019
 Ptychadena mascareniensis 0.471 0.208
 Rana bedriagae 0.413 0.019
 Sphenops sepsoides 0.512 0.361
 Trapelus mutabilis 0.408 0.039
Butterflies
 Colias croceus 0.461 0.247
 Danaus chrysippus 0.521 0.438
 Lampides boeticus 0.625 0.750
 Leptotes pirithous 0.476 0.190
 Pelopidas thrax 0.450 0.108
 Pieris rapae 0.440 0.238
 Pontia glauconome 0.474 0.294
 Vanessa atalanta 0.420 ,0.001
 Vanessa cardui 0.427 ,0.001
 Zizeeria karsandra 0.500 0.300
Mammals
 Capra nubiana 0.420 ,0.001
 Gazella dorcas 0.406 0.296
 Lepus capensis 0.460 0.159
the probability of site occupancy (ψ), which is equivalent to 
the proportion of sites predicted to be occupied, were con-
sistent with estimates of range size derived from the species 
distribution models (Spearman’s rank correlation test: rs 5 
0.453, n 5 23, p 5 0.03).

Model accuracy estimates made by partitioning the origi-
nal species records into model-building and model-evaluation  
datasets, were high and significantly better than random 
(one sample t-test: t 5 22.0, DF 5 33, p , 0.001). AUC 
values ranged from 0.666 to 0.975, with an average of 0.845  
6 0.016. Accuracy estimates made using the independent 
presence records (i.e. records from the new survey) and pseudo- 
absences were also high and significantly better than random 
(t 5 16.7, DF 5 33, p , 0.001). AUC values ranged from 
0.485 to 1.000, with an average of 0.875 6 0.022. Finally, 
accuracy estimates generated using the independent presences 
and absences were reasonably high and significantly better 
than random (t 5 4.03, DF5 33, p , 0.001), although 
lower than estimates made using pseudo-absences. AUC val-
ues ranged from 0.219 to 1.000, with an average of 0.655 6 
0.039 (for examples of the distribution models, Fig. 2). Test-
ing the accuracy of models against the independent records, 
using the slope of the relationship between model predicted 
probability of occurrence and observed occurrence (presence 
or absence), also showed the predictions to be reasonably 
accurate. The relationships were positive for 26/34 species, 
although only nine were significantly positive (GLM: p , 
0.05). Slope coefficients ranged from –5.67 to 22.13; the 
average coefficient was significantly greater than zero (one 
1330
sample t-test: t 5 3.16, DF 5 32, p 5 0.003). Estimates of 
accuracy made using subsets of the original presence records 
correlated significantly and positively with estimates made 
using the independent records (Spearman’s rank correlation: 
rs 5 0.544, n 5 34, p 5 0.001; Fig. 3). 

Model accuracy showed no clear relationship with esti-
mated species detectability (Spearman’s rank correlation: 
rs 5 –0.294, n 5 25, p 5 0.154). However, for butterfly 
species, wingspan correlated positively with model accuracy 
(Pearson’s correlation coefficient: r 5 0.652, n 5 10, p 5 
0.041; Fig. 4). Model accuracy was negatively related to the 
predicted range size of species within Egypt (GLM: sum of 
AIC weights 5 0.952; Table 2, Fig. 5a). Surprisingly, there 
was also a strong negative effect of the number of species 
presence records used to build the models on the accuracy of 
predictions (sum of AIC weights 5 0.991; Table 2, Fig. 5b). 
There was little support for an effect of taxonomic group on 
the accuracy of distribution models (sum of AIC weights 5 
0.172; Table 2).

Discussion

Overall, the distribution models built in this study were 
shown to be significantly better than random when tested 
against independent data collected by surveying a diverse 
range of habitats in Egypt. This strongly suggests that data 
from museums, natural history collections and literature can 
be used to make useful predictions about species’ ranges. 
Several studies have reached a similar conclusion (Peterson 
et al. 2002, Raxworthy et al. 2003), but it is rare that mod-
els are tested against independent evaluation data (but see 
Loyn et al. 2001, Elith 2002, Ferrier et al. 2002, Elith et al. 
2006). Uncertainties and biases will be more prevalent in 
models built using museum and literature records (Graham 
et al. 2004), making evaluation with independent data more 
important. Some authors have experimented with using spe-
cies records from separate geographical areas (Peterson and 
Shaw 2003, Randin et al. 2006, Heikkinen et al. 2007) or 
time periods (Raxworthy et al. 2003) to evaluate models. 
However, predictions extrapolated outside the environmen-
tal conditions encompassed by the data that were used to 
build the model are likely to be inaccurate in the new areas 
even if they are accurate in the area for which they were built. 
The best approach is to collect new, independent data inside 
the study area for which the models were developed reducing 
bias as much as possible, particularly bias in environmental 
space (Wintle et al. 2005).

The reliability of data on species absence probably depends 
on the relative detectability of the taxa in question (MacKenzie  
et al. 2002). There was substantial variation in estimated 
detection probability among species in the new survey. 
The results of the maximum likelihood model were consis-
tent with our expectations. First, the predicted proportion 
of sites occupied correlated positively with predicted range 
size according to the distribution models. Second, detection 
probabilities were very low for elusive species, such as the 
snakes, and for rare migrants, such as the red admiral but-
terfly Vanessa atalanta, and higher for conspicuous and more 
abundant species, including some of the lizards and most of 
the butterflies. The accuracy of species distribution models 
Table 1. Estimated probabilities of occurrence (ψ) and detection, 
given occurrence (p) for species recorded in the walking transects at 
the fully-surveyed sites. Each transect was treated as an independent 
sampling event. ψ and p were estimated using a maximum likeli-
hood approach (MacKenzie et al. 2002), assuming that both proba-
bilities are constant across sites.



did not appear to be affected by detection probability sug-
gesting that, even in small-scale surveys with relatively few 
visits to each site, imperfect detection of species may not be 
a major problem. On the other hand, the accuracy of distri-
bution models for butterfly species was positively correlated 
with body size, which was used as a surrogate for detectabil-
ity. It is possible that our maximum likelihood-based esti-
mates of detection probability were inaccurate; for instance, 
one of the major assumptions of the maximum likelihood 
model that we used is that occurrence and detection prob-
abilities are constant across sites (MacKenzie et al. 2002), 
which is very unlikely to be true. However, very abundant 
and easily detectable species, such as the long-tailed blue 
butterfly Lampides boeticus and Bosk’s lizard Acanthodacty-
lus boskianus, had high estimated detection probabilities and 
inaccurate distribution models, whereas species that are dif-
ficult to detect, such as Montpellier’s snake Malpolon mon-
spessulanus, had low estimated detectability but very accurate 
distribution models. An alternative explanation for the rela-
tionship between butterfly wingspan and distribution-model 
accuracy is that larger butterflies are more mobile and able to 
reach a greater proportion of suitable habitat, giving a closer 
correlation between environmental variables and occurrence 
(Pöyry et al. 2008), although the effect of body size on but-
terfly mobility is contentious (Cowley et al. 2001).
Estimates of model accuracy made using the data  
partitioning approach were relatively consistent with esti-
mates made using the new survey data. This suggests that 
Figure 2. Predicted distributions and independent occurrence records for two species: (a) the Montpellier snake Malpolon monspessulanus, 
which had the most accurate distribution model; and (b) the cape hare Lepus capensis, which had the least accurate distribution model. 
Distribution models were built with Maxent ver. 3.1.0 using records from the BioMAP database and variables describing climate and 
habitat. Light shading indicates areas with a high probability of occurrence, while dark shading indicates a low probability of occurrence. 
The independent occurrence records (1 5 presence; O 5 absence) were collected during a new field survey of 21 sites in the summers 
(May–July) of 2007 and 2008; these records were used to evaluate the distribution models.
Figure 3. The relationship, for 34 species of Egyptian mammal, but-
terfly, reptile and amphibian species, between distribution-model 
accuracy estimated using independent species presence and absence 
records, and distribution-model accuracy estimated using parti-
tioned data, whereby the original species presence records were ran-
domly divided in half for model building and model evaluation 
respectively. Accuracy was estimated using the AUC statistic  
(Fielding and Bell 1997).
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a data-partitioning approach can give us a good idea about 
the relative accuracy of models and can be used to compare 
model accuracy among species. Accuracy estimates made 
using the partitioned species records and pseudo-absences, 
and also with independent presence records and pseudo-
absences, were much higher than estimates made using both 
independent presence and independent absence records. This 
is consistent with a previous suggestion that overly-optimistic 
estimates of model accuracy can be generated using pseudo-
absence data (Lobo et al. 2008), but it should be borne in 
mind that the small numbers of independent records may 
partly explain the low measures of accuracy using indepen-
dent data. Nevertheless, further comparisons of model accu-
racy using pseudo-absences and real absences are needed and 
it would be prudent not to use data partitioning as the sole 
method for evaluating distribution models, especially if the 
models will be used for conservation decision-making. The 
accepted threshold of 0.7 above which models are considered 
to be good (Pearce and Ferrier 2000) may place undeserved 
confidence in poor predictions.

Some of the variation in model accuracy was explained 
by range size. Species with larger ranges within Egypt were 
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Model

Deviance in AUC 
values explained

 
AIC

AIC 
difference (Δi)

Model  
weight (wi)

R1S 48.34  –20.41 0 0.804
R1S1T 49.05  –16.9  3.51 0.139
S1T 40.63  –13.68  6.73 0.0278
S 31.96  –13.04  7.37 0.0202
R1T 34.53  –10.35 10.06 0.00526
R 24.6   –9.55 10.86 0.00353
T  3.71    0.756 21.17 2.04 3 1025
modelled less accurately than species with smaller ranges.  
A negative effect of range size on the accuracy of species dis-
tribution models has been reported before (Stockwell and 
Peterson 2002, Brotons et al. 2004, Segurado and Araújo 
2004, Hernandez et al. 2006, Newbold et al. 2009b), but 
most of these studies have used real presence data with 
pseudo-absence data. Thus, the apparent effect of range 
size could be a statistical artefact owing to pseudo-absences 
being more distant in environmental space from the pres-
ence records for species with smaller range sizes (Lobo  
et al. 2008). Our results show that the distributions of spe-
cies with smaller ranges are modelled more accurately even 
in the absence of statistical artefacts. This could be because 
narrowly-distributed species have more specific climate and 
habitat requirements than more widespread species (Brotons 
et al. 2004, Hernandez et al. 2006). Alternatively, separate 
populations of widespread species may show local adapta-
tion to the environmental conditions in different parts of 
the study area (Stockwell and Peterson 2002, Brotons et al. 
2004): although two of the butterfly species have more than 
one sub-species in Egypt (Carcharodus stauderi and Spialia 
doris; Gilbert and Zalat 2007), these distinctions were not 
considered in this study.
Figure 4. Relationship between the wingspan (wing-tip to wing-tip; 
(Gilbert and Zalat 2007)) of ten Egyptian butterfly species and the 
accuracy of distribution models, assessed using independent species 
records from a new field survey. Model accuracy was measured with 
the AUC statistic (Fielding and Bell 1997).
Figure 5. For 34 species of Egyptian reptiles, amphibians, butter-
flies and mammals: (a) the relationship between range size, esti-
mated as the proportion of grid cells in Egypt predicted occupied, 
and the accuracy of distribution models estimated using indepen-
dent species records from a new field survey; (b) the relationship 
between the number of presence records used to build the distribu-
tion model and model accuracy, estimated using independent spe-
cies records. Model accuracy was measured using the AUC statistic 
(Fielding and Bell 1997).
Table 2. Results from a set of generalized linear models with a 
normal error distribution testing factors affecting variation in the 
accuracy of species distribution models among species. Factors 
tested were predicted range size in Egypt (R), number of presence 
records used to build the models (S), and taxonomic group (T). 
Candidate models were built with every combination of terms. 
These models were compared using AIC and the difference 
between the AIC of a model and the minimum AIC of all models. 
Model weights were calculated following Burnham and Anderson 
(2002).



Surprisingly, we found a significant negative effect of the 
number of species records used to build models on the accu-
racy of model predictions. Most previous studies have found 
the relationship between sample size and model accuracy, if 
present, to be positive (Pearce and Ferrier 2000, Phillips et al. 
2004). Several studies have shown that species with narrower 
distributions and more specific habitat requirements are 
modelled more accurately (Kadmon et al. 2003, Hernandez  
et al. 2006, Newbold et al. 2009b). It is probable that some 
aspect of this was captured by sample size but not by the mea-
sure of range size that we used. For example, more narrowly 
distributed species are likely to be less abundant (Gaston  
et al. 2000) and thus detected less often during surveys. Alter-
natively, habitat specialists may be easier to model because 
they have very specific requirements, but may be restricted 
to particular microhabitats or resources and thus have been 
detected less frequently in the past.

Ideally data used to evaluate the accuracy of distribution 
models should be completely independent of the data used 
to build the models and free from any bias (Chatfield 1995), 
but given limited resources this may not be possible (Wintle  
et al. 2005). Although our new species records contained some 
bias (for example, towards locations near roads), we reduced 
environmental bias by selecting sites that covered as broad a 
range of climate and habitat types as possible. This approach 
is better than simple data-partitioning, because some bias has 
been eliminated and because locational error in the records 
has been eliminated. Moreover, it is more practicable than a 
truly random survey, especially for less accessible areas such as 
Egypt. The time constraints imposed on our field expedition 
meant that we were only able to survey the northeast part of 
Egypt. Therefore, we cannot be certain that the models were 
accurate for other parts of Egypt, particularly in the Western 
desert where museum records are scarce. Nevertheless, at least 
in northeast Egypt, the models appeared to provide an accu-
rate reflection of the distribution of species.

In conclusion, our results support the use of species dis-
tribution models in ecology. Predictions made for many spe-
cies in three very different taxonomic groups were shown 
to be accurate using completely independent species occur-
rence data. However, there was considerable variation across 
species in the accuracy of distribution models. Distribution 
models have great potential as tools for conservation, but it 
is crucial that their predictions are first evaluated thoroughly. 
Currently, using completely independent data to evaluate 
model predictions is a rare practice, which is not surprising 
given that conducting new surveys can be time-consuming 
and very expensive (Wintle et al. 2005). However, we show 
that even small field surveys can be used to test model accu-
racy and can highlight patterns in the accuracy of models.
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