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INTRODUCTION

In 2002, the Convention on Biological Diversity adopted the

target of significantly reducing the rate of biodiversity loss by

2010. Monitoring biodiversity trends requires knowledge of

the distributions of species and of patterns in species richness.

However, such data are limited, especially in the tropics

(Anderson et al., 2003) and in arid regions (Stockwell & Peters,

1999).

Using statistical methods to predict the distribution of

species is an approach that shows great promise (Wintle

et al., 2005). Distribution models relate known species

occurrence data to environmental variables, such as climatic

variables and habitat types. Both traditional statistical tech-

niques and newer methods have been shown to model

individual species distributions with a high degree of

accuracy (Elith et al., 2006). Some authors have experi-

mented with summing individual predictions of species

distributions to estimate species richness. For example,

Garcia (2006) produced distribution models for 267 reptile

and amphibian species in Mexico and summed them to

produce a prediction of species richness. However, when

large numbers of species are involved, summing distribution

models to generate species richness predictions may be time-

consuming (Gioia & Pigott, 2000). An alternative approach is

to model species richness directly. Whilst there have been

many attempts to find climatic and habitat-related determi-

nants of species richness patterns (e.g. Kivinen et al., 2007;

Levinsky et al., 2007), no studies have explicitly compared

summed distribution predictions with models of species

richness per se, although Gioia & Pigott (2000) used both

approaches. Such a comparison will be very useful for

conservation biologists attempting to understand spatial

patterns of biodiversity.
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ABSTRACT

Aim Identifying areas of high species richness is an important goal of

conservation biogeography. In this study we compared alternative methods for

generating climate-based estimates of spatial patterns of butterfly and mammal

species richness.

Location Egypt.

Methods Data on the occurrence of butterflies and mammals in Egypt were

taken from an electronic database compiled from museum records and the

literature. Using Maxent, species distribution models were built with these data

and with variables describing climate and habitat. Species richness predictions

were made by summing distribution models for individual species and by

modelling observed species richness directly using the same environmental

variables.

Results Estimates of species richness from both methods correlated positively

with each other and with observed species richness. Protected areas had higher

species richness (both predicted and actual) than unprotected areas.

Main conclusions Our results suggest that climate-based models of species

richness could provide a rapid method for selecting potential areas for protection

and thus have important implications for biodiversity conservation.
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Many studies have investigated correlates of species richness,

often finding climate variables to be good correlates of

observed patterns (e.g. Hawkins et al., 2003). Arid environ-

ments are under-studied in this respect (but see van Rensburg

et al., 2002; Schmidt et al., 2008). The mechanistic explanation

for these relationships remains a matter of debate, and the

conclusions of any study of patterns of species richness are

strongly affected by the spatial scale at which they are

conducted (Field et al., 2009). Currie et al. (2004) explored

three hypotheses for climate-based patterns in species richness,

concerning energy, the climatic tolerance of species and

speciation rates. They did not find unequivocal support for

any of these hypotheses in the literature. At broad scales,

historical factors (Qian & Ricklefs, 2000) and the distribution

of resources (Araújo & Luoto, 2007) may play important roles

in determining species richness. At finer scales, competition

(Anderson et al., 2002), metapopulation dynamics (Hanski,

1991) and human disturbance (Uehara-Prado et al., 2007)

have also been shown to exert a significant influence on species

richness.

Several studies have shown that butterfly and mammal

species richness correlate with climate and habitat variables in

temperate and tropical regions, at both local scales (Turner

et al., 1987; Kivinen et al., 2007; Kuussaari et al., 2007) and at

broader scales (Nogués-Bravo & Araújo, 2006; Algar et al.,

2007; Levinsky et al., 2007). However, to date very few studies

have investigated correlates of mammal and butterfly species

richness in an arid environment (but for mammals see

Andrews & O’Brien, 2000).

In this paper we report the results of a study of butterfly

and mammal species richness in Egypt, a country with a

typical arid-environment flora and fauna. Egypt has two

endemic and two near-endemic butterfly species, and also

three endemic subspecies (Larsen, 1990). The mammal fauna

includes four endemic and 10 near-endemic species. We

sought to identify environmental correlates of species rich-

ness at a local scale in an arid environment. We also asked

whether estimates of the species richness of Egyptian

butterflies and mammals derived from models of species

richness had a good match with estimates made by summing

individual models of the distribution of species, and whether

both these estimates matched observed patterns of species

richness.

One application of models of species richness is in assessing

the effectiveness of protected areas. Global estimates of the

effectiveness of protected areas generally suggest poor coverage

of biodiversity (Chape et al., 2005). Country-level studies have

often found species richness to be no higher in protected areas

than in unprotected areas (e.g. Pawar et al., 2007; Traba et al.,

2007; but see, e.g., Lee et al., 2007). Egypt has 27 current or

proposed protected areas, covering a total of 11% of its land

surface (Egyptian Environmental Affairs Agency, 2007). All

these have been gazetted since 1983, mostly at the recommen-

dation of scientists familiar with Egypt’s biodiversity. As such,

we may expect them to show better coverage of biodiversity

than protected areas in other countries. We tested whether

protected areas in Egypt have higher species richness than

unprotected areas.

MATERIALS AND METHODS

Species and climate data

Species occurrence data were compiled as part of Egypt’s

BioMAP project (see http://www.biomapegypt.org/ for more

details). The butterfly dataset consisted of 1898 records for 59

species, mostly from museum specimens and the sparse

literature on Egyptian butterflies (Larsen, 1990; Gilbert &

Zalat, 2007). Records were made between the years 1829 and

2006, but most were from the 20th century (see Fig. S1 in

Appendix S1 in Supporting Information). All extant specimens

in Egyptian collections were re-identified according to the

latest taxonomic opinion; Larsen (1990) had already reviewed

and checked most other records. Coverage of Egypt is patchy,

but probably fairly representative in the sense that all the main

areas where butterflies occur have been sampled, whilst the

huge areas of the Great Sand Sea where no butterflies are

thought to occur have not been sampled. The main lacuna in

collecting effort is the Qattara Depression in the northern part

of the Western Desert.

The mammal data consisted of 4718 records for 103 species,

also taken from museum and personal records, unpublished

reports and the published literature. Mammal records were

made between the years 1580 and 2007, but the majority fell in

the second half of the 20th century (see Fig. S1 in Appendix

S1). The identification of every record and Egyptian specimen

was checked or rechecked, according to the latest taxonomic

opinion (Wilson & Reeder, 2005), by the top mammal

taxonomist in Egypt (Dr M. Bassiouny, Al Azhar University,

Cairo). Coverage of Egypt is very good, due to systematic and

extensive collecting in the period 1950–80 coupled with careful

evaluation of taxonomy (see Osborn & Helmy, 1980).

All locations were mapped as accurately as possible using a

bespoke gazetteer developed by the BioMAP project over

3 years of collating Egyptian biodiversity records. The maxi-

mum error of each location was estimated by the point radius

method (see Wieczorek et al., 2004) and excessively inaccurate

records rejected.

Climatic predictors were taken from the WorldClim

version 1.4 dataset at a resolution of 30 arcsec (c. 1 km)

(Hijmans et al., 2005). This source contains 20 variables

describing aspects of temperature, precipitation and elevation.

We also used a new Egyptian geological habitat map (hereafter

referred to simply as habitat) (A. A. Hassan, unpublished

data). Habitat was classified into 11 classes (sea, littoral coastal

land, cultivated land, sand dune, wadi, metamorphic rock,

igneous rock, gravels, serir sand sheets, sabkhas and sedimen-

tary rocks) based on remote sensing and extensive ground

truthing. In preliminary analyses we also experimented with

topographical predictors (slope and aspect). However, these

variables did not significantly improve model accuracy and

were excluded from the final analyses.
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To ensure that the species records were not environmentally

biased, we tested their coverage of the main environmental

gradients. Butterfly and mammal sites were treated separately

for this analysis. Four principal component variables based on

the 20 climatic and elevation variables were each classified into

four categories using Jenks (1967) natural breaks, giving 256

unique combinations of categories (henceforth called areas of

climatic space). The number of areas of climatic space that

contained at least one survey location was calculated. To

estimate the number of areas that would have been visited if

sampling was completely random, we generated 100 sets of

random survey points of the same number as the real sampling

locations and calculated the number of areas represented. To

evaluate the coverage of habitat classes by sampled locations, a

chi-square test was performed to assess whether sites fell into

significantly (a = 0.05) different proportions of classes than

expected by chance.

Modelling species richness

We modelled the species richness of butterflies and mammals

separately, using two methods. First, we summed predictions

of the distribution of individual species, using a resolution of

30 arcsec. We made initial distribution models for the 40

butterfly species and 68 mammal species with at least eight

records of occurrence, using Maxent version 2.3 (Phillips

et al., 2006). Maxent is designed for use with species datasets

that contain only records of presence (Phillips et al., 2006) and

thus may be particularly useful when species data are taken

from museum collections. Maxent attempts to find a

probability distribution that is as close to uniform as possible

with the constraint that the expected value of each environ-

mental variable (the sum, across all grid cells, of the product of

the probability of occurrence and the value of the environ-

mental variable) must equal the mean value at the presence

points (the empirical average). Regularization relaxes this

constraint such that the expected value of each environmental

variable may fall within a predefined margin around the

empirical average, preventing over-fitting of the model (Dudı́k

et al., 2004). The algorithm runs until improvement in model

accuracy at each iteration falls below a set threshold (conver-

gence) or until a maximum number of iterations have been

performed. Full details are given in Phillips et al. (2006). We

used the 19 climatic variables, elevation and habitat as

predictor variables. Linear and quadratic terms were fitted

for continuous variables. We used default values for all

parameters (a regularization value of 1, a convergence

threshold of 0.00001, a maximum of 500 iterations and a

sample of 10,000 points to characterize the background

environment). Ten initial models were made for each species.

For each model, the species data were randomly divided into

half for building the model and half for evaluating the model.

The accuracy of each model was assessed using the ‘area under

the receiver operating characteristic curve’ (AUC) statistic, as

calculated within the Maxent procedure. Following the

recommendations made by Swets (1986), we eliminated five

butterfly species and seven mammal species with mean AUC

scores of < 0.7. This left 35 butterfly species, including one of

the two endemic species and both near-endemic species, and

61 mammal species, including three of the four endemic

species and five out of 10 near-endemic species.

A single final model was then made for each of the

remaining species, again at a resolution of 30 arcsec, using the

same modelling protocol, but this time using all presence

records. The output of statistical models varies among species

according to the relative numbers of presences and absences in

the species data (prevalence) (Manel et al., 2001). Therefore,

simply summing the output of individual distribution models

may bias estimates of species richness in favour of taxa with

many records. It is better to convert the model output into a

binary prediction of presence or absence around a threshold

value. Many methods have been proposed for choosing

appropriate thresholds. For datasets consisting only of pres-

ences, Pearson et al. (2004) recommended using a threshold

that maximizes sensitivity (the percentage of presences

correctly predicted as being present at a given threshold).

Here we used a threshold that resulted in a sensitivity of 95%.

Once the models had been converted to binary predictions of

presence or absence, they were summed across all species to

give an estimate of species richness.

The second method of modelling species richness was to

model observed species richness values directly. This part of

the study was concerned with the total number of species

recorded in each cell rather than individual records of species.

Therefore, we used a resolution of 0.5�, because at the finer

resolution most cells contained no records. Observed species

richness was calculated from the original survey data in diva-

gis 5.2 (http://www.diva-gis.org/). A species was considered

present in a cell if it had been recorded at least once. Species

richness was modelled using generalized linear models (GLMs)

with the same independent variables as in the species

distribution models. Following an inspection of the residuals

of a general linear model and consideration of dispersion, the

most appropriate family of GLMs was chosen for each model.

The variables were resampled to the coarser resolution using

bilinear interpolation. In bilinear interpolation, the values of

the four nearest grid cells to the target cell are averaged after

being weighted according to their distance to the target cell.

Fitting too many independent variables in GLMs may result in

overfitting and the selection of nonsense variables in the final

model (Wintle et al., 2005). To avoid these problems, we

performed a principal components analysis (PCA) on the 19

climatic variables and elevation across all 406 of the 0.5� cells.

Components with an eigenvalue > 1.0 were retained as new

predictor variables. In the GLMs, linear and quadratic terms

were fitted for each of these components. We constructed two

separate models of species richness: (1) assuming that cells

with no species records had a species richness of zero; and (2)

excluding cells with a recorded species richness of zero. In the

first we fitted recorded species richness values of all 406 of the

0.5� grid cells in the study area. We used a GLM with negative

binomial errors (NB-GLM) and the log link (Crawley, 2002;
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Venables & Ripley, 2002). For the second model, since some

cells with a recorded richness of zero may occur simply because

they have not been sampled and the results could be biased by

the inclusion of false zero values, we fitted the species richness

values of 0.5� cells with at least one record of the taxonomic

group in question – 100 cells for butterflies and 196 cells for

mammals. A GLM with Poisson errors (P-GLM) and the log

link (McCullagh & Nelder, 1989) was used.

Statistical analysis

The agreement between fitted values of species richness

generated using the different methods was tested using

Spearman’s rank correlation tests. For comparison, the species

richness prediction generated by summing individual distri-

bution models was resampled from its original resolution of

30 arcsec to a resolution of 0.5� using bilinear interpolation.

Thus, all tests compared species richness across all 362 of the

0.5� grid cells with an estimate of species richness by all three

models. These comparisons included cells with no species

records; these cells were assumed to have a species richness of

zero. We also repeated the same correlation tests using only

cells that had at least one record of a species in the group being

considered.

We tested whether Egypt’s protected areas network repre-

sented butterfly and mammal species richness well by

comparing estimated (using the distribution model-sum

method) and observed species richness inside and outside

protected areas at 2000 points, randomly situated in 1-km cells

throughout the study area. These points were generated using

Hawth’s analysis tools for ArcMap 9.1 (Beyer, 2004). We also

compared both estimated and observed richness of endemic

and near-endemic species inside and outside protected areas.

For this comparison, we grouped mammals and butterflies

because the number of endemic species was small.

The NB-GLMs and P-GLMs were built using the glm

(Poisson errors) and glm.nb (negative binomial errors)

packages in R 2.6.1 (R Development Core Team, 2004). For

both, a manual backward stepwise selection procedure was

used to remove terms that did not significantly improve the

deviance explained, until a minimum adequate model was

obtained (Crawley, 2002). All other analyses were carried out

using spss 15.0 (SPSS Inc., Chicago, USA). The comparison of

actual and predicted species richness inside and outside

protected areas was undertaken using a Mann–Whitney U-test.

RESULTS

The species occurrence data showed no biases in environmental

space that would preclude accurate modelling. Sampled sites

covered the full range of values of each of the principal

components based on the climatic variables. The butterfly

sampling locations fell into 44 of 256 areas of climatic space,

84.1% of the number expected by chance. Sites that were

sampled for mammals covered 76 areas of climatic space,

107.5% of the number expected by chance. Sites for both

butterflies and mammals fell into significantly different pro-

portions of habitat types than expected by chance (v2 = 1035,

d.f. = 9, P < 0.001 and v2 = 2248, d.f. = 9, P < 0.001, respec-

tively). For both butterflies and mammals, littoral coastal areas,

cultivated land, wadis (dry desert valleys), areas of metamor-

phic rock and areas of igneous rock were sampled more often

than expected by chance. Sand dunes, gravels, serir sand sheets

and areas of sedimentary rock were sampled less often than

expected by chance. Sixty-three of 333 butterfly sites and 200 of

1395 mammal sites fell inside Egypt’s protected areas. A map of

Egypt’s protected areas and the sites that were sampled for

mammals and butterflies is given in Fig. 1(a).

The final distribution models (those using all the species

occurrence data) achieved mean AUC values between 0.863

and 0.999 for butterfly species and between 0.831 and 0.999 for

mammal species. The average relative contribution of habitat,

elevation and the 19 climatic variables to the final distribution

models is shown in Fig. S2 in Appendix S1, and the contri-

butions of variables in the models for each species are given

in Appendix S2. Habitat and elevation were important in

explaining the distributions of both butterflies and mammals.

Among the climatic predictors, temperature-related variables

were more important than precipitation-related variables in

determining butterfly distributions, while for mammals,

annual and maximum precipitation variables were also

important.

The predictions of species richness made using the first

method (summing distribution models for individual species)

are mapped in Fig. 1(b,c). The models of species richness

generated using this method correlated positively and signif-

icantly with observed species richness (Table 1, Fig. 2a). The

second method of estimating spatial patterns of species

richness was to model species richness values directly. The

PCA of the 19 climatic variables and elevation produced four

components with eigenvalues > 1.0. All original climate

variables were represented in at least one of the extracted

components (Table S1 in Appendix S1). Scores on the first

principal component increased with increasing maximum

temperature and decreasing precipitation annually and at

otherwise wet times of year (Table S1 in Appendix S1). The

second component increased with increasing annual temper-

ature and increasing temperature during cooler periods of the

year. The third component described increasing elevation,

decreasing annual temperature and increasing precipitation at

drier times of the year. The fourth component increased with

decreasing temperature during dry periods, increasing precip-

itation (annually and during cold times of the year) and

decreasing minimum precipitation. The models fitting species

richness values for all 406 of the 0.5� cells (NB-GLM), which

included cells with a recorded species richness of zero,

explained 16.3% of the deviance in the species richness of

butterfly species and 21.3% of the deviance in mammal species

richness. For butterflies, only the linear term of PC1 (describ-

ing mainly precipitation but also maximum temperature) and

habitat had a significant effect on species richness (Table 2).

For mammals, habitat, the quadratic term of PC1 and both
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terms of PC2 (describing several temperature-related variables)

and PC4 (describing variables related to extremes of temper-

ature and rainfall) had a significant effect on species richness

(Table 2). Estimated species richness according to the NB-

GLMs correlated significantly and positively with observed

species richness (Table 1, Fig. 2b). The models fitting species

richness values only for 0.5� cells with at least one species

record (P-GLM) explained 19.1% of the deviance in butterfly

species richness and 18.3% of the deviance in mammal

richness. For butterflies, both terms of PC1 and PC4, the

quadratic term of PC3 (high values of which indicate high-

altitude areas with rainfall all year round) and habitat were all

significantly related to species richness (Table 3). For mam-

mals, both terms of PC1, the quadratic terms of PC2 and PC4,

(a)

(b)

(c)

Figure 1 (a) Sites where mammals (circles) and butterflies

(triangles) were sampled, and the location of Egypt’s protected

areas (grey shading). Maps of (b) predicted butterfly and (c)

mammal species richness generated by summing individual pre-

dictions of the distributions of species. Lighter tones indicate high

predicted species richness and darker tones indicate lower species

richness. The distribution predictions were made using Maxent.

Table 1 Correlations among fitted values of each of the three

models of species richness of butterflies (B) and mammals (M) in

Egypt, and correlations between these fitted values and observed

species richness. The three models of species richness were: (1)

summed distributions – distribution models were built for each

species at 30 arcsec resolution using Maxent, then summed to

estimate species richness; (2) NB-GLM – species richness values of

all 0.5� cells were fitted using a generalized linear model (GLM)

with negative binomial errors; (3) P-GLM – species richness values

of sampled cells were fitted using a GLM with Poisson errors.

Correlations were calculated both for all cells and for sampled cells

only. Species richness values cannot be considered independent

in the presence of spatial autocorrelation; the effective sample size

is reduced in the presence of such non-independence. Therefore,

the minimum sample sizes at which the reported correlation

coefficients would remain significant (at a = 0.05) are given in

brackets after the correlation coefficient.

Correlation Cells Taxon rs n P

Observed and summed

distributions

All B 0.456 (15) 362 < 0.001

M 0.595 (10) 362 < 0.001

Sampled B 0.343 (25) 88 0.001

M 0.534 (12) 171 < 0.001

Observed and NB-GLM All B 0.319 (28) 362 < 0.001

M 0.553 (11) 362 < 0.001

Sampled B 0.296 (32) 88 0.005

M 0.334 (26) 171 < 0.001

Observed and P-GLM All B 0.232 (52) 362 < 0.001

M 0.414 (17) 362 < 0.001

Sampled B 0.392 (19) 88 < 0.001

M 0.388 (20) 171 < 0.001

Summed distributions

and NB-GLM

All B 0.529 (12) 362 < 0.001

M 0.762 (7) 362 < 0.001

Sampled B 0.508 (12) 88 < 0.001

M 0.620 (9) 171 < 0.001

Summed distributions

and P-GLM

All B 0.455 (15) 362 < 0.001

M 0.633 (9) 362 < 0.001

Sampled B 0.308 (30) 88 0.004

M 0.575 (10) 171 < 0.001

NB-GLM and P-GLM All B 0.891 (6) 362 < 0.001

M 0.802 (7) 362 < 0.001

Sampled B 0.692 (8) 88 < 0.001

M 0.760 (7) 171 < 0.001
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the linear term of PC3 and habitat were significant predictors

of species richness (Table 3). Species richness estimates from

these models also correlated significantly and positively with

observed species richness (Table 1, Fig. 2c). Across all 0.5� grid

cells, the estimates made using the different modelling

methods correlated significantly with each other (Table 1,

Fig. 3).

Observed mammal and butterfly species richness values

correlated significantly with each other at sites where at least

one butterfly species and one mammal species had been

recorded (rs = 0.615, n = 97, P < 0.001). Predicted species

richness (estimated using the distribution model-sum method)

also correlated strongly and significantly between butterflies

and mammals (rs = 0.920, n = 362, P < 0.001).

Across a random sample of 2000 1-km grid cells, predicted

species richness, estimated by summing individual modelled

species distributions, of both butterflies (Mann–Whitney test:

U = 76,100, n = 1995, P < 0.001) and mammals (Mann–

Whitney test: U = 70,300, n = 1995, P < 0.001) was signifi-

cantly higher inside protected areas than outside (Fig. 4a). The

observed species richness was also significantly higher inside

protected areas than outside for both butterflies (Mann–

Whitney test: U = 111,000, n = 1995, P = 0.016) and mam-

mals (Mann–Whitney test: U = 80,700, n = 1995, P < 0.001)

(Fig. 4b). Predicted (Mann–Whitney test: U = 105,000,

n = 1963, P = 0.028) and observed (Mann–Whitney test:

U = 102,000, n = 1963, P = 0.001) richness of endemic and

near-endemic species (mammals and butterflies combined)

was significantly higher inside protected areas than outside.
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Figure 2 Correlations between observed species richness and

predicted species richness of butterflies and mammals in Egypt

estimated using each of the three models: (a) predictions of the

distribution of each species, produced using Maxent, were

summed; (b) recorded species richness values of all grid cells were

modelled using a generalized linear model with negative binomial

errors; and (c) recorded species richness values of sampled grid

cells were modelled using a generalized linear model with Poisson

errors.

Table 2 Results of generalized linear models (GLMs) with neg-

ative binomial errors, fitting the observed species richness of

butterflies and mammals in Egypt of all 0.5� grid squares as the

dependent variable, with habitat and four bioclimatic principal

component axes (linear and quadratic terms) as independent

variables. Significant terms are shown in bold. LR, likelihood ratio.

Term Coefficient d.f. LR statistic P

Butterflies

Intercept 0.41

PC1 )0.664 1 17.3 < 0.001

(PC1)2 NA 1 0.975 0.324

PC2 NA 1 0.545 0.46

(PC2)2 NA 1 2.41 0.121

PC3 NA 1 )0.124 1

(PC3)2 NA 1 )1.79 1

PC4 NA 1 )3.14 1

(PC4)2 NA 1 3.44 0.0635

Habitat NA 9 19.1 0.0247

Mammals

Intercept 1.33

PC1 NA 1 0.854 0.355

(PC1)2 0.776 1 57.1 < 0.001

PC2 0.58 1 17.3 < 0.001

(PC2)2 )0.175 1 5.74 0.0166

PC3 NA 1 0.0297 0.863

(PC3)2 NA 1 1.2 0.273

PC4 )1.17 1 55.5 < 0.001

(PC4)2 )0.286 1 11.3 < 0.001

Habitat NA 9 22 0.009
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DISCUSSION

We found significant relationships between species occur-

rence, species richness and the climate and habitat variables

that we used. Beale et al. (2008) found that relationships

between species occurrence and environmental variables were

no better than expected by chance. However, we found that

habitat and climate variables both had a significant effect on

butterfly and mammal distributions, and on patterns of

species richness, at least at the local scale at which we carried

out this study. This finding is consistent with previous studies

of butterflies and mammals, where climate and habitat have

been identified as good predictors of richness, both at

continental and at local scales (e.g. Nogués-Bravo & Araújo,

2006; Algar et al., 2007; Kivinen et al., 2007; Levinsky et al.,

2007). The association with habitat may reflect the effect of

variation in plant communities on animal species distribu-

tions. Butterflies and herbivorous mammals are directly

dependent on plants for food, whilst other mammal species

may rely on certain vegetation types indirectly, for example

through the availability of herbivorous prey. Temperature

variables appear to have a particularly strong effect on

butterfly species, although causality cannot be inferred from

correlative models. Similar relationships have been noted

before (Turner et al., 1987) and could be brought about by

direct effects of temperature on thermoregulation, or indi-

rectly through climate-driven variation in habitat diversity or

plant productivity.
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Figure 3 Correlations between the different models used to

predict species richness patterns of butterflies and mammals in

Egypt: (a) between the sum of individual species distribution

models and the generalized linear model with negative binomial

errors (NB-GLM) of species richness values; (b) between the

sum of individual species distribution models and the generalized

linear model with Poisson errors (P-GLM) of species richness

values; and (c) between the NB-GLM and P-GLM models of

species richness values. y = x lines are shown for reference.

Table 3 Results of generalized linear models (GLMs) with

Poisson errors, fitting the observed species richness of butter-

flies and mammals in Egypt of sampled 0.5� grid cells only

(i.e. excluding zero values), with habitat and four bioclimatic

principal component axes (linear and quadratic terms) as inde-

pendent variables. Significant terms are shown in bold.

Term Coefficient d.f. Deviance explained P

Butterflies

Intercept Null = 717.8

PC1 )0.339 1 25.4 < 0.001

(PC1)2 )0.147 1 14.8 < 0.001

PC2 NA 1 0.1 0.75

(PC2)2 NA 1 0.47 0.49

PC3 NA 1 0.35 0.55

(PC3)2 )0.0787 1 17.7 < 0.001

PC4 NA 1 0.11 0.74

(PC4)2 0.0904 1 9.66 0.00189

Habitat NA 9 92.21 < 0.001

Mammals

Intercept 2.08 Null = 1408

PC1 )0.276 1 112 < 0.001

(PC1)2 NA 1 3.29 0.07

PC2 NA 1 0.59 0.44

(PC2)2 NA 1 1.58 0.21

PC3 )0.288 1 94.3 < 0.001

(PC3)2 NA 1 2.83 0.09

PC4 )0.0853 1 10.1 0.00145

(PC4)2 NA 1 0.76 0.38

Habitat NA 9 65.2 < 0.001
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Many other factors in addition to climate may affect species

richness, including competition (Anderson et al., 2002), the

availability of host plants (Araújo & Luoto, 2007), metapop-

ulation dynamics (Hanski, 1991), human disturbance (Uehara-

Prado et al., 2007) and other environmental variables such as

soil type (Kuussaari et al., 2007), although some of these factors

are likely to play a role in determining species richness only at

larger spatial scales than were studied here (Whittaker et al.,

2001). Given all these non-climatic determinants of species

richness patterns, it is not surprising that only a relatively low

proportion of the variation in species richness was explained by

the models, and that the correlations between modelled and

observed species richness were only moderately strong. Some

progress is being made towards including factors other than

climatic ones in species distribution models (e.g. Araújo &

Luoto, 2007) and this must remain a priority for improving the

accuracy of predictions. However, the need to identify areas to

conserve is urgent and we cannot wait to act until the most

accurate models possible have been built for every species.

Climate-based models match observed distributions well and

are quick and easy to build for a large number of species.

Another reason for the relatively low explanatory power of

the models may be that species inventories in sampled cells

were incomplete. This seems likely, given that it may be

necessary to visit a site many times before absence can be

inferred with confidence (MacKenzie et al., 2002). In the case

of the NB-GLMs, the inclusion of cells with no records of

species presence may have introduced false absences to the

models. This is especially likely for the butterfly models,

because surveying was less extensive. Ground-truthing will be

required to assess the extent to which mismatches between

modelled and observed species richness are due to incomplete

inventories or to errors in the models.

Across all grid cells in the study area, the three methods

produced models that showed positive correlations with

observed species richness and with each other, suggesting

that they could all be used to predict the species richness

of unknown areas from limited data on the distributions of

species, an application that would be of great value for

conservation. There were some differences among the models

though. Species occurrence and richness data often contain

many absences or zero values, especially datasets for small or

cryptic species with a low probability of detection (Mac-

Kenzie et al., 2002). This can bias the parameter estimates of

statistical models (Martin et al., 2005). The weaker correla-

tions between observed species richness and species richness

estimated using the NB-GLMs (those that included cells with

recorded species richness of zero), especially for butterflies,

may be caused by the inclusion of false absences. This

conclusion is further supported by the observation that the

NB-GLMs produced much lower estimates of species rich-

ness than the other two methods (see Fig. 3). The mammal

data covered a much larger proportion of both geographical

and environmental space than the butterfly data, suggesting

that recorded species richness values of zero were more

reliable.

Summing the individual distribution models produced the

best estimates of species richness. The relationship between

predicted and observed species richness across sampled cells

was slightly weaker for butterflies, which may be a result of

model bias caused by false absence records. This would be

concerning, given that Maxent is designed to be used with

datasets containing only presences (Phillips et al., 2006) and is

a possibility that deserves further attention. However, for both

butterflies and mammals, summing distribution models pro-

duced the estimates of species richness that matched observed

species richness most closely. The P-GLM models, which did

not include cells with a recorded species richness of zero,

generated more accurate estimates of species richness than the

NB-GLM models. GLMs are quick and easy models to build,

making them a good first choice for modelling species richness

patterns.

Some previous work has indicated good spatial agreement

among different groups in their species richness at regional

scales (Qian, 2007), although a global study of bird, mammal

and amphibian species richness found the converse (e.g.

Grenyer et al., 2006). The results of this study show that, at

(a)

(b)

Figure 4 (a) Comparison of predicted species richness

(mean ± SE) of butterflies and mammals in Egypt, estimated by

summing individual species distribution models, between pro-

tected areas and unprotected areas. (b) Comparison of observed

species richness (mean ± SE) between protected areas and

unprotected areas.
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least at a local scale within a single country, butterfly and

mammal diversity correlate strongly and positively.

In contrast to the findings for many other countries and

taxonomic groups (e.g. Evans et al., 2006; Pawar et al., 2007;

Traba et al., 2007), Egypt’s protected areas network seems to

be effective in representing butterfly and mammal diversity. In

many parts of the world, protected areas have historically

included land that has relatively little commercial value; such

areas do not necessarily represent the best choice in terms of

conserving biodiversity (Margules & Pressey, 2000). Egypt’s

protected areas network is relatively new and the areas were

chosen with the aid of knowledge about the country’s

biodiversity. Given such knowledge, and the ability to over-

come conflicting interests over land use, it seems that good

coverage of biodiversity can be achieved. On the other hand,

large areas of the Nile Valley and Delta were predicted to have

relatively high butterfly diversity but are not yet protected,

suggesting that although great progress has been made towards

protecting species-rich areas, more could still be done. The

Nile Valley contains land of high economic value, and setting

aside areas to be protected may present a challenge. It is

important to note that species richness is only one measure of

the importance of conserving different areas. Some authors

have suggested using taxonomic uniqueness (e.g. Kershaw

et al., 1995), complementarity (Margules & Pressey, 2000) or

threat (Wilson et al., 2007) instead. Many of Egypt’s endemic

and near-endemic mammal and butterfly species were

included in the models and the richness of endemic and

near-endemic species was higher inside protected areas than

outside, but a more comprehensive assessment of the protected

areas should consider a number of different criteria.

In summary, we have shown that seemingly accurate

estimates of species richness can be made using patchy,

incomplete data, allowing us to predict the species richness of

sites that have not been surveyed. The three models of species

richness were largely similar, although the model based on

individual distribution models produced the most consistently

accurate results. A similar comparison of the same three

models in different regions and for different species would be

useful in establishing the general reliability of the approach.

Models based on species richness itself, rather than individual

species distributions, may be useful when species identity is

unknown, for example when using species richness estimators.

The results are important for conservation, given the urgency

with which we must identify areas that need to be protected,

although similar comparisons of species richness models for

more taxonomic groups and for a broader geographical region

would be useful.
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Filho, J.A.F., Guégan, J.F., Kaufman, D.M., Kerr, J.T.,

Mittelbach, G.G., Oberdorff, T., O’Brien, E.M. & Turner,

J.R.G. (2009) Spatial species-richness gradients across

scales: a meta-analysis. Journal of Biogeography, 36, 132–

147.

Garcia, A. (2006) Using ecological niche modelling to identify

diversity hotspots for the herpetofauna of Pacific lowlands

and adjacent interior valleys of Mexico. Biological Conser-

vation, 130, 25–46.

Gilbert, F. & Zalat, S.M. (2007) Butterflies of Egypt: atlas, Red

Data listing and conservation. Egyptian Environmental Af-

fairs Agency, Cairo.

Gioia, P. & Pigott, J.P. (2000) Biodiversity assessment: a case

study in predicting richness from the potential distributions

of plant species in the forests of south-western Australia.

Journal of Biogeography, 27, 1065–1078.

Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Da-

vies, R.G., Davies, T.J., Jones, K.E., Olson, V.A., Ridgely,

R.S., Rasmussen, P.C., Ding, T.S., Bennett, P.M., Blackburn,

T.M., Gaston, K.J., Gittleman, J.L. & Owens, I.P.F. (2006)

Global distribution and conservation of rare and threatened

vertebrates. Nature, 444, 93–96.

Hanski, I. (1991) Single-species metapopulation dynamics –

concepts, models and observations. Biological Journal of the

Linnean Society, 42, 17–38.

Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan,

J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff,

T., O’Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003)

Energy, water, and broad-scale geographic patterns of

species richness. Ecology, 84, 3105–3117.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis,

A. (2005) Very high resolution interpolated climate surfaces

for global land areas. International Journal of Climatology,

25, 1965–1978.

Jenks, G.F. (1967) Visualizing statistical distributions and

generalizing process. Annals of the Association of American

Geographers, 57, 179.

Kershaw, M., Mace, G.M. & Williams, P.H. (1995) Threatened

status, rarity and diversity as alternative selection measures

for protected areas – a test using Afrotropical antelopes.

Conservation Biology, 9, 324–334.

Kivinen, S., Luoto, M., Kuussaari, M. & Saarinen, K.M. (2007)

Effects of land cover and climate on species richness of

butterflies in boreal agricultural landscapes. Agriculture

Ecosystems & Environment, 122, 453–460.

Kuussaari, M., Heliölä, J., Luoto, M. & Pöyry, J. (2007)

Determinants of local species richness of diurnal Lepidop-

tera in boreal agricultural landscapes. Agriculture, Ecosystems

and Environment, 122, 366–376.

Larsen, T.B. (1990) The butterflies of Egypt. The American

University Press, Cairo.

Lee, T.M., Sodhi, N.S. & Prawiradilaga, D.M. (2007) The

importance of protected areas for the forest and endemic

avifauna of Sulawesi (Indonesia). Ecological Applications, 17,

1727–1741.

Levinsky, I., Skov, F., Svenning, J.-C. & Rahbek, C. (2007)

Potential impacts of climate change on the distributions and

diversity patterns of European mammals. Biodiversity and

Conservation, 16, 3803–3816.

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S.,

Royle, J.A. & Langtimm, C.A. (2002) Estimating site occu-

pancy rates when detection probabilities are less than one.

Ecology, 83, 2248–2255.

Manel, S., Williams, H.C. & Ormerod, S.J. (2001) Evaluating

presence–absence models in ecology: the need to account for

prevalence. Journal of Applied Ecology, 38, 921–931.

Margules, C.R. & Pressey, R.L. (2000) Systematic conservation

planning. Nature, 405, 243–253.

Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field,

S.A., Low-Choy, S.J., Tyre, A.J. & Possingham, H.P. (2005)

Zero tolerance ecology: improving ecological inference by

modelling the source of zero observations. Ecology Letters, 8,

1235–1246.

McCullagh, P. & Nelder, J.A. (1989) Generalized linear models.

Chapman & Hall, London.
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