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Abstract Species distribution models show great promise as tools for conservation

ecology. However, their accuracy has been shown to vary widely among taxa. There is

some evidence that this variation is partly owing to ecological differences among species,

which make them more or less easy to model. Here we test the effect of five characteristics

of Egyptian butterfly species on the accuracy of distribution models, the first such com-

parison for butterflies in an arid environment. Unlike most previous studies, we perform

independent contrasts to control for species relatedness. We show that range size, both

globally and locally, has a negative effect on model accuracy. The results shed light on

causes of variation in distribution model accuracy among species, and hence have rele-

vance to practitioners using species distribution models in conservation decision making.

Keywords AUC � Ecological characteristics � Independent contrasts �
Lepidoptera � Maxent � Species distribution models

Introduction

Species distribution models have great potential to aid conservation efforts, allowing

ecologists to predict species distributions over a large area, using incomplete data on

species occurrence combined with maps of environmental variables, describing climate,

habitat and topography (Wintle et al. 2005). Many studies have compared the accuracy of

predictions made by different modelling techniques, often finding that many techniques

perform similarly well (Elith et al. 2006; Hernandez et al. 2006; Phillips et al. 2006). In
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fact, there may be more variation in model accuracy among species than among modelling

techniques (Berg et al. 2004; Elith et al. 2006). As a result, whether the characteristics of

species affect the accuracy of distribution models is a question that is receiving increasing

attention in the literature.

The breadth of a species’s niche has often been considered when trying to explain

differences in model accuracy among species. Studies have found that species with narrow,

well-defined niches are better modelled than those with broader niches (Boone and Krohn

1999; Pearce et al. 2001; Kadmon et al. 2003; Berg et al. 2004) and that models for

specialist species are generally more accurate than models for generalists (Hepinstall et al.

2002; Segurado and Araújo 2004; Elith et al. 2006). Species with narrow niches generally

have better-defined climate and habitat requirements, which are easier to model (Kadmon

et al. 2003). Other studies have shown that the breadth of a species’ niche relative to the

environmental conditions found in the study area as a whole influences model accuracy

more than the breadth of a species’ niche per se (Seoane et al. 2005; Hernandez et al.

2006). More marginal species (those that have niches furthest from the average conditions

of the study area) have also been shown to be modelled more accurately than less marginal

species, probably for similar reasons (Luoto et al. 2005; Seoane et al. 2005; Carrascal et al.

2006; Hernandez et al. 2006). We might expect therefore that the accuracy of species

distribution models will decrease with increasing niche breadth or habitat tolerance.

Models for species that have narrow distributions in geographical space have also been

found to be more accurate than models for species with larger distributions (Stockwell and

Peterson 2002; Brotons et al. 2004; Segurado and Araújo 2004; Hernandez et al. 2006).

This may be related to the effect of niche width, with smaller range size being associated

with better-defined habitat requirements (Brotons et al. 2004; Hernandez et al. 2006).

Alternatively, populations of species with larger ranges may show local adaptation to

different environmental conditions, decreasing the accuracy of models that consider all

populations together (Stockwell and Peterson 2002; Brotons et al. 2004). Similarly,

McPherson and Jetz (2007) found that endemic species were modelled more accurately

than non-endemic species; this effect may be related to the effects of local range size and

niche breadth or may be because the environmental gradients inhabited are incompletely

sampled in the case of non-endemics (McPherson and Jetz 2007). Overall, we expect

species with smaller range sizes, both on local and regional scales, to be modelled more

accurately than species with larger ranges. Tests of the effect of range size on model

accuracy may be confounded by statistical artefacts. The AUC statistic is a common

measure of the accuracy of species distribution models and has been used in many of the

studies reviewed here. However, it may be biassed in favour of species with narrow ranges

(Lobo et al. 2008).

Only a few studies have considered the effect of migratory behaviour on the accuracy of

distribution models. All such studies have focused on birds, most finding that models for

migratory species were poorer than models for non-migratory species (Pearce et al. 2001;

McPherson and Jetz 2007), probably because the distributions of migratory species are

determined by environmental conditions at very specific times of the year (McPherson and

Jetz 2007). Conversely, Stockwell and Peterson (2002) found no difference in model

accuracy between migratory and non-migratory species, and Mitchell et al. (2001) found

that models for migratory bird species were better than models for resident species. No

previous study has compared model accuracy between migratory and non-migratory but-

terfly species. Pöyry et al. (2008) showed that more mobile butterfly species were better

modelled than less mobile species, probably because more mobile species can expand

their ranges into uninhabited areas more easily and hence occupy a greater proportion
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of the suitable habitat than less mobile species (but see Pearce et al. 2001). We expect

distribution models to be more accurate for resident butterfly species than for migratory

species.

There is evidence that both sample size and prevalence (the relative number of presence

and absence records) affect the accuracy of distribution models (Manel et al. 1999;

Stockwell and Peterson 2002; Brotons et al. 2004; Luoto et al. 2005; Seoane et al. 2005).

Therefore, it is important to account for these factors when comparing model accuracy

among species (Karl et al. 2002; Huntley et al. 2004; McPherson et al. 2004). Reported

effects of prevalence on model accuracy have been mixed, including both positive and

negative relationships (Luoto et al. 2005; Brotons et al. 2004), but we expect model

accuracy to increase with sample size.

Some authors have demonstrated evolutionary conservatism of ecological niches

(Peterson et al. 1999). Furthermore, there may be a substantial heritability in many of the

characteristics of species used to explain differences in model accuracy, particularly range

size (Jablonski 1987; Hunt et al. 2005; Beck et al. 2006; but see Webb and Gaston 2003).

However, to date, only one study has controlled for phylogeny when investigating dif-

ferences in distribution model accuracy among species (Pöyry et al. 2008). In this case,

incorporating phylogeny did not affect the results, but this may not be true for other

taxonomic groups, regions or characteristics of species.

In this study, we test the effect of five characteristics of species (local range size, global

range size, migratory behaviour, host-plant specialisation and habitat tolerance) on the

accuracy of distribution models for butterflies in Egypt, controlling for the potentially

confounding effects of sample size and prevalence on model accuracy. Two separate

measures of model accuracy were used to minimise the impact of statistical bias on our

conclusions. We also control for the influence of species relatedness using independent

contrasts.

Materials and methods

Data describing the occurrence of 59 butterfly species in Egypt were compiled as part of

Egypt’s BioMAP project (Gilbert and Zalat 2007). The species data were collected

between 1829 and 2006, but most records date from the 20th Century (Newbold et al.

2009). We used five environmental variables as predictors: four principal components,

which describe altitude and 19 bioclimatic variables from WorldClim (Hijmans et al.

2005), and a categorical land cover variable based on AVHRR satellite data (Hansen et al.

2000). Land cover is classified into 13 categories globally—needleleaf evergreen forest,

broadleaf evergreen forest, needleleaf deciduous forest, broadleaf deciduous forest, mixed

forest, woodland, wooded grassland, closed shrubland, open shrubland, grassland, crop-

land, bare ground, and urban areas (Hansen et al. 2000)—eight of which are found in

Egypt. All variables had a resolution of 30 arc seconds (*1 km).

Models were built with Maxent Version 2.3 (Phillips et al. 2006). We generated dis-

tribution models for 40 species with at least eight occurrence records. The datasets for each

species were divided randomly, with half the records used for model building and half for

model evaluation. For each species we built ten models, using different subsets of the data

to build and evaluate each.

We initially evaluated the models using the area under the receiver operating charac-

teristic curve (AUC). AUC values were calculated using the trapezoid method (Pearce and

Ferrier 2000a). Its calculation requires both presence and absence records. We generated
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2,500 pseudo-absences, randomly situated in grid cells with no recorded occurrence of a

given species. The AUC statistic may be sensitive to the extent of the study area and the

proportion of this area that the species inhabits. As an additional evaluation of model

performance, we fitted a generalised linear model (GLM) with binomial errors using the

presences and pseudo-absences reserved for model evaluation as the dependent variable

and the model predicted probability of occurrence at these sites as a single independent

variable. The deviance explained by this model was used as a measure of model accuracy.

Negative values indicate negative relationships between model predicted probability and

observed occurrence. AUC values and deviances explained were averaged across all ten

model runs for each species.

We considered six characteristics of species that may affect the accuracy of distribution

models: (1) the mean number of presence records used in the ten model runs; (2) whether

the species is a migrant, partial migrant or resident in Egypt; (3) whether the species is a

specialist or generalist in terms of the host plants it uses; (4) the species’ inhabited range

size within Egypt; (5) its global range size (endemic, near-endemic, restricted-range,

narrowly distributed or widespread); and (6) its habitat tolerance. Migratory behaviour data

were taken from Gilbert and Zalat (2007). Species were defined as specialists if their host

plants are confined to one genus and as generalists otherwise, according to Gilbert and

Zalat (2007). Maxent outputs a cumulative predicted probability of occurrence for each

model between 0 and 100. The mean proportion of grid cells with a predicted value of

greater than 50 (averaged across the ten model runs for each species) was used as an index

of range size within Egypt. Global range size followed the classifications used in Gilbert

and Zalat (2007). The breadth of a species’ habitat tolerance was estimated as the number

of land cover categories into which recorded species occurrences fell into.

The results of cross-species comparisons may be confounded by an effect of species

relatedness on their niches and on the species characteristics considered. To control for this

we calculated independent contrasts for both measures of model accuracy and all six

characteristics of species (Harvey and Pagel 1991). One species characteristic (migratory

behaviour) was a categorical variable with more than two categories, so we reclassified it

into a series of binary variables, one for each category of the original variable. A phylo-

genetic topology was generated based on published studies (Pieridae: Pollock et al. 1998;

Braby et al. 2006; Lycaenidae: Pierce et al. 2002; Pech et al. 2004; Nymphalidae: Brower

2000; Wahlberg et al. 2003; Freitas and Brown 2004; All groups: Garcı́a-Barros 2000;

Wahlberg et al. 2005). In the absence of data describing branch lengths, all branches were

assigned a length of one, assuming punctuational evolution (Bro-Jørgensen 2007). We

inserted small branches of length 0.0001 in to polytomous clades. The phylogenetic tree

was constructed in TreeView 1.6.6 (Page 1996) and modified using Mesquite 1.12

(Maddison and Maddison 2007). The independent contrasts were calculated using Com-

pare Version 4.6b (Martins 2004).

Statistical analysis

We arc-sin transformed model-accuracy measures (both AUC values and deviance

explained) to meet assumptions of normality where appropriate. The effects of species

characteristics on model accuracy were assessed using analyses of covariance; these

analyses took AUC values and deviances explained by the models as the dependent

variables, respectively. The six species characteristics were considered as independent

variables. Preliminary analysis suggested that two-way interactions did not have a sig-

nificant effect on model accuracy, so these were excluded from the final analyses.
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We used a model selection method based on the approach recommended by Burnham

and Anderson (2002). First, we built a global model with all six terms, and candidate

models with every combination of terms. AIC scores were extracted for each model and

the difference between a model’s AIC value and the lowest value of all models (the AIC

difference, Di) was calculated. Model weight was calculated using the following formula

(Burnham and Anderson 2002):

Wi ¼
exp �1

2
Di

� �

PR
r¼1 exp �1

2
Dr

� �

where Di is the AIC difference of the model in question and Drs are the AIC differences of

the other models. The relative importance of each variable was assessed by summing the

AIC weights of all candidate models containing it (Burnham and Anderson 2002), here-

after referred to as the ‘sum of AIC weights’. To test the effect of including species with

very small numbers of presence records on the conclusions drawn, we repeated the same

analyses considering only the 22 species with more than 20 unique presence records.

Relationships among independent contrasts for model accuracy measures and species

characteristics were analysed using Pearson’s correlation tests.

All statistical tests were carried out in SPSS Version 15.0 and R Version 2.6.1 (R

Development Core Team 2004).

Results

Models were generally accurate, attaining a mean AUC value of 0.83 ± 0.015 and

explained a mean deviance in species occurrence of 23.31 ± 2.98. Predicted range size

within Egypt had a strong negative effect on model performance, using both AUC values

(sum of AIC weights = 0.921; Table 1; Fig. 1a) and deviances explained by the models

(sum of AIC weights = 0.997; Table 2; Fig. 1b) as measures of model accuracy. World

range also had a strong negative effect on model accuracy, measured using both AUC

values (sum of AIC weights = 0.733; Table 1; Fig. 1c) and the deviance explained by the

models (sum of AIC weights = 0.988; Table 2; Fig. 1d). World range and range within

Table 1 Results of a set of general linear models testing the effect of species characteristics on the
accuracy of species distribution models for 40 Egyptian butterfly species, measured using the AUC statistic

Model Deviance explained AIC AIC difference (Di) Model weight (wi)

R ? W 28.13 -32.87 0.00 0.134

S ? R ? W 29.61 -31.70 1.17 0.0749

P ? R ? W 29.39 -31.58 1.29 0.0706

M ? R ? W 32.28 -31.25 1.62 0.0598

R ? W ? H 28.64 -31.16 1.71 0.0572

R 20.58 -30.87 2.00 0.0495

Characteristics tested were: the number of presence records used to build models (P), migratory behaviour
(M), host-plant specificity (S), predicted range size in Egypt (R), world range size (W) and habitat tolerance
(H). Candidate models were built with every possible combination of terms. These models were compared
using the approach recommended by Burnham and Anderson (2002), by calculating AIC values for each
model, the difference between the AIC for a model and the minimum AIC for all models (Di), and model
weights based on these values. We only present the best models (Di B 2) here
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Egypt did not correlate significantly with one another (Spearman rank correlation:

rs = 0.120, n = 40, P [ 0.05). There was limited support for an effect on model accuracy

of the number of presence records used to build models (sum of AIC weights = 0.347 and
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Fig. 1 Effect of species characteristics on model accuracy. Accuracy was measured using both the AUC
statistic and the deviance explained by the models. Species characteristics that had a significant effect on
model accuracy are shown: predicted range within Egypt (a, b) and world range (c, d). With the exception of
the effect of predicted range size within Egypt on AUC scores, all relationships remained significant after
accounting for species relatedness using independent contrasts

Table 2 Results of a set of general linear models testing the effect of species characteristics on the
accuracy of species distribution models for 40 Egyptian butterfly species, measured as the deviance
explained by the models

Model Deviance explained AIC AIC difference (Di) Model weight (wi)

R ? W 52.55 -37.82 0.00 0.212

P ? R ? W ? H 55.75 -36.60 1.22 0.115

P ? R ? W 53.32 -36.47 1.35 0.108

S ? R ? W 52.97 -36.17 1.65 0.0929

R ? W ? H 52.71 -35.95 1.87 0.0832

Characteristics tested were: the number of presence records used to build models (P), migratory behaviour
(M), host-plant specificity (S), predicted range size in Egypt (R), world range size (W) and habitat tolerance
(H). Candidate models were built with every possible combination of terms. These models were compared
using the approach recommended by Burnham and Anderson (2002), by calculating AIC values for each
model, the difference between the AIC for a model and the minimum AIC for all models (Di), and model
weights based on these values. We only present the best models (Di B 2) here
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0.453, for AUC values and deviances explained by models, respectively), migratory

behaviour (sum of AIC weights = 0.382 and 0.224), host-plant specificity (sum of AIC

weights = 0.316 and 0.318) or habitat tolerance (sum of AIC weights = 0.302 and 0.411).

Considering only species with more than 20 unique presence records did not qualitatively

alter the results, although migratory behaviour appeared to be a more important determi-

nant of model accuracy in these analyses (Tables 3, 4 in Appendix).

When species relatedness was accounted for using independent contrasts, world range

still showed a significant negative relationship with model accuracy, estimated using both

AUC (rp = -0.323, N = 39, P = 0.045) and deviance explained by the models (rp =

-0.478, N = 39, P = 0.002). Predicted range within Egypt showed a significant negative

relationship with deviance explained by the models (rp = -0.394, N = 39, P = 0.013),

but not with average AUC score (rp = -0.110, N = 39, P = 0.506). All other charac-

teristics tested did not have a significant effect on model accuracy after accounting for the

relatedness of species (-0.241 B rp B 0.172, N = 39, P [ 0.05).

Discussion

Our results confirm that characteristics of species can strongly affect model accuracy,

although the factors considered explained a relatively small proportion of the variation in

accuracy measures. Of the six characteristics that we tested, two had consistent signif-

icant effects on model performance. Disentangling causal mechanisms for patterns such

as these is difficult because range size shows relationships with abundance and occu-

pancy (Gaston et al. 2000), and also with ecological characteristics of species, such as

dispersal ability and niche breadth (Beck and Kitching 2007). However, our results are

consistent with hypothesised relationships between range size and the accuracy of dis-

tribution models.

Species with large local range sizes had less accurate models than those with small

range sizes. This is consistent with the results of other studies (Stockwell and Peterson

2002; Brotons et al. 2004; Segurado and Araújo 2004; Hernandez et al. 2006). Species

with small ranges included both desert species and species inhabiting the Nile Valley

and Delta, thus the effect of range size was not an artefact of certain habitats con-

taining better-modelled species. Some authors have suggested that species with smaller

ranges have better-defined habitat requirements, making them easier to model (Brotons

et al. 2004; Hernandez et al. 2006). However, contrary to the findings of other studies

(Boone and Krohn 1999; Pearce et al. 2001; Kadmon et al. 2003; Berg et al. 2004), we

found no evidence of an effect of habitat tolerance on the accuracy of species distri-

bution models. A similar study to our own, comparing model accuracy among butterfly

species in a temperate environment (Pöyry et al. 2008), also found no effect of niche

breadth. Therefore, it would seem that other characteristics of butterfly species may be

more important in determining the accuracy of butterfly distribution models, or that

aspects of niche breadth that determine model accuracy are not captured by the

measures used.

It has been suggested that the AUC statistic may be biased in favour of species that

occupy a small proportion of the study area (Lobo et al. 2008), which may explain the

existence of negative relationships between range size and model accuracy. However, in

our study, the effect of range size was the same for two independent measures of model

accuracy, suggesting that the relationship was not an artefact associated with use of the

AUC statistic. More generally, the use of pseudo-absences may affect measures of model
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accuracy (VanDer Wal et al. 2009) and thus relationships between range size and model

accuracy. However, we found a strong effect of both global and local range size on model

accuracy. While the effect of local range size may be affected by statistical artefacts, the

effect of global range size should not.

Species with larger ranges may be modelled less accurately because the study area

contains discrete populations that show different responses to the environment (Stockwell

and Peterson 2002; Brotons et al. 2004). Although some studies suggest that niches are

highly evolutionarily conserved (Peterson et al. 1999), others have found that organisms

can adapt their niches very rapidly in certain situations (Knouft et al. 2006). The exis-

tence of different populations within species that respond differently to the environment

is certainly possible in our study; at least two butterfly species (Carcharodus stauderi
and Spialia doris) are known to be represented by two sub-species in Egypt (Gilbert and

Zalat 2007). Furthermore, the Nile River, Suez Canal and the mountains of the Eastern

and Sinai Deserts may present dispersal barriers for some species, causing isolation of

populations.

Global range size also had a strong effect on the accuracy of our models. Predictions for

endemic, near-endemic and restricted-range species were better than those for more

widespread species. This has been shown before for birds (McPherson and Jetz 2007), and

recently for butterflies (Marmion et al. 2008). It has been suggested that endemic species

are modelled more accurately because the environmental gradients that they inhabit have

been completely sampled, whereas only part of the total inhabited environmental space is

sampled for non-endemics (McPherson and Jetz 2007). Alternatively, the effect of global

range may be brought about by similar mechanisms to the effect of local range size, i.e.

larger-ranged species having locally-adapted populations (e.g. Stockwell and Peterson

2002) or having broader habitat requirements that are more difficult to model (e.g. Her-

nandez et al. 2006).

Previous studies have suggested that the distributions of specialist species are better

modelled than those of generalist species (Hepinstall et al. 2002; Segurado and Araújo

2004; Elith et al. 2006). Ours is the first study to test for this effect in butterflies, and we

find little evidence that specialists and generalists differ in the accuracy of their distri-

bution models. Butterflies are dependent on certain plant species as host plants and the

distribution of these plants can strongly affect the distribution of the butterflies (Araújo

and Luoto 2007, but see Quinn et al. 1998). Therefore, it may be the identity, rather than

the number, of host plants that affects the accuracy of butterfly distribution models. If the

distribution of a butterfly’s host plant is largely determined by climate and habitat, then

we might expect that a model for the butterfly that is based on climate and habitat

variables will be more accurate than if the host-plant’s distribution is determined by

other factors.

Few studies have considered the effect of migratory behaviour on the accuracy of

species distribution models and these have focused on bird species, generally finding that

migrant species are modelled less accurately than resident species (Pearce et al. 2001;

McPherson and Jetz 2007). If anything, partial migrants had the least accurate models in

this study. One possible explanation is that the distributions of both residents and migrants

are strongly determined by environmental variables, but that each responds slightly dif-

ferently to those variables. If partially-migratory species consist of separate populations of

migrants and residents, then their distribution models will be less accurate than species that

are entirely migratory or entirely resident and respond consistently to the environmental

variables. Given the weak trend suggested in our data, more work is needed to explore this

phenomenon further.
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Several authors have reported a significant effect of sample size on model accuracy

(Pearce and Ferrier 2000b; Stockwell and Peterson 2002; Phillips et al. 2004; Hernandez

et al. 2006), although this effect has been shown to vary among modelling techniques. In

this study we used Maxent to build our models and found no relationship between sample

size and model performance. This supports the results of other studies that have shown that

Maxent is generally robust to variation in sample size and that it produces accurate pre-

dictions even with very small samples (e.g. Hernandez et al. 2008). Most studies of the

effects of sample size on model performance (Pearce and Ferrier 2000b; Stockwell and

Peterson 2002; Phillips et al. 2004; Hernandez et al. 2006) have experimentally altered

sample sizes for one species. We tested the effect of the available sample size across many

species. It may be that the completeness of sampling with respect to the environmental

gradients rather than sample size alone is most important in determining model accuracy,

although Kadmon et al. (2003) found that distribution-model accuracy decreased with the

completeness of sampling with respect to climatic gradients.

It is important to account for the effect of species relatedness in comparisons of models

across species; otherwise, false conclusions may be drawn regarding the effect of some

species characteristics on model accuracy, as is the case in other comparative studies (e.g.

Harvey and Pagel 1991). Although accounting for species relatedness had no effect on the

conclusions of this study, species distributions, and also some of the species characteristics

tested, are known to be evolutionarily conserved (Jablonski 1987; Peterson et al. 1999;

Hunt et al. 2005).

The results have important consequences, both for species distribution modelling itself

and for conservation biology more generally. It is important to understand why models for

different species perform differently before using them to make conservation decisions.

This is the first test of differences in accuracy among distribution models of butterflies in

an arid environment. The results are generally consistent with those of similar studies of

butterflies in other parts of the world, although we present the first test of the effects of

migratory behaviour and host-plant specialism on the accuracy of models for butterfly

species. It is important to note that the factors that determine species distributions vary

according to the scale of analysis (Whittaker et al. 2001), and thus the characteristics of

species that affect distribution-model accuracy may also differ. We also emphasise that it is

important to control for phylogeny when conducting cross-species comparisons like this

one. Although there was substantial variation among species in model accuracy, accurate

models were produced for many species, confirming the value of such models in conser-

vation ecology.
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Appendix

To check that our conclusions were not biased by including species with very small

numbers of presence records, we repeated the analyses of the effect of characteristics of

species on distribution model accuracy, considering only species with at least 20 unique

presence records. See Tables 3 and 4.
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Brotons L, Thuiller W, Araújo MB et al (2004) Presence-absence versus presence-only modelling methods
for predicting bird habitat suitability. Ecography 27:437–448. doi:10.1111/j.0906-7590.2004.03764.x

Brower AVZ (2000) Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial
sequences of the wingless gene. Proc R Soc Lond B Biol Sci 267:1201–1211. doi:10.1098/rspb.
2000.1129

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-
theoretic approach. Springer, New York

Carrascal LM, Seoane J, Palomino D et al (2006) Species-specific features affect the ability of census-
derived models to map winter avian distribution. Ecol Res 21:681–691. doi:10.1007/s11284-
006-0173-y

Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions
from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

Freitas AVL, Brown KS Jr (2004) Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol 53:363–383. doi:
10.1080/10635150490445670

Garcı́a-Barros E (2000) Body size, egg size, and their interspecific relationships with ecological and life
history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol J Linn Soc Lond 70:251–
284. doi:10.1111/j.1095-8312.2000.tb00210.x

Gaston KJ, Blackburn TM, Greenwood JJD et al (2000) Abundance–occupancy relationships. J Appl Ecol
37(S1):39–59. doi:10.1046/j.1365-2664.2000.00485.x

Gilbert F, Zalat S (2007) The butterflies of Egypt: Atlas, red data listing and conservation. BioMAP, EEAA,
Cairo. Available at http://www.nottingham.ac.uk/~plzfg/publicns.htm

Hansen MC, Defries RS, Townshend JRG et al (2000) Global land cover classification at 1 km spatial
resolution using a classification tree approach. Int J Remote Sens 21:1331–1364. doi:10.1080/014311
600210209

Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press,
Oxford

Hepinstall JA, Krohn WB, Sader SA (2002) Effects of niche width on the performance and agreement of
avian habitat models. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occur-
rences: issues of accuracy and scale. Island Press, Washington

Hernandez PA, Graham CH, Master LL et al (2006) The effect of sample size and species characteristics on
performance of different species distribution modeling methods. Ecography 29:773–785. doi:
10.1111/j.0906-7590.2006.04700.x

Hernandez PA, Franke I, Herzog SK et al (2008) Predicting species distributions in poorly-studied land-
scapes. Biodivers Conserv 17:1353–1366. doi:10.1007/s10531-007-9314-z

Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global
land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

Hunt G, Roy K, Jablonski D (2005) Species-level heritability reaffirmed: a comment on ‘‘On the heritability
of geographic range sizes’’. Am Nat 166:129–135. doi:10.1086/430722

Huntley B, Green RE, Collingham YC et al (2004) The performance of models relating species geographical
distributions to climate is independent of trophic level. Ecol Lett 7:417–426. doi:10.1111/j.1461-0248.
2004.00598.x

Jablonski D (1987) Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks.
Science 238:360–363. doi:10.1126/science.238.4825.360

Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the performance of climatic
envelope models. Ecol Appl 13:853–867. doi:10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2

Karl JW, Svancara LK, Heglund PJ (2002) Species commonness and the accuracy of habitat-relationship
models. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of
accuracy and scale. Island Press, Washington

Knouft JH, Losos JB, Glor RE et al (2006) Phylogenetic analysis of the evolution of the niche in lizards of
the Anolis sagrei group. Ecology 87(S):29–38

Biodivers Conserv (2009) 18:3629–3641 3639

123

http://dx.doi.org/10.1111/j.0906-7590.2004.03553.x
http://dx.doi.org/10.1890/1051-0761(1999)009[0835:MTOOBS]2.0.CO;2
http://dx.doi.org/10.1111/j.1558-5646.2007.00111.x
http://dx.doi.org/10.1111/j.0906-7590.2004.03764.x
http://dx.doi.org/10.1098/rspb.2000.1129
http://dx.doi.org/10.1098/rspb.2000.1129
http://dx.doi.org/10.1007/s11284-006-0173-y
http://dx.doi.org/10.1007/s11284-006-0173-y
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1080/10635150490445670
http://dx.doi.org/10.1111/j.1095-8312.2000.tb00210.x
http://dx.doi.org/10.1046/j.1365-2664.2000.00485.x
http://www.nottingham.ac.uk/~plzfg/publicns.htm
http://dx.doi.org/10.1080/014311600210209
http://dx.doi.org/10.1080/014311600210209
http://dx.doi.org/10.1111/j.0906-7590.2006.04700.x
http://dx.doi.org/10.1007/s10531-007-9314-z
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1086/430722
http://dx.doi.org/10.1111/j.1461-0248.2004.00598.x
http://dx.doi.org/10.1111/j.1461-0248.2004.00598.x
http://dx.doi.org/10.1126/science.238.4825.360
http://dx.doi.org/10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2
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