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Species distribution modelling (SDM) has become an essential method in ecology and 
conservation. In the absence of survey data, the majority of SDMs are calibrated with 
opportunistic presence-only data, incurring substantial sampling bias. We address the 
challenge of correcting for sampling bias in the data-sparse situations. We modelled the 
relative intensity of bat records in their entire range using three modelling algorithms 
under the point-process modelling framework (GLMs with subset selection, GLMs 
fitted with an elastic-net penalty, and Maxent). To correct for sampling bias, we applied 
model-based bias correction by incorporating spatial information on site accessibility 
or sampling efforts. We evaluated the effect of bias correction on the models’ 
predictive performance (AUC and TSS), calculated on spatial-block cross-validation 
and a holdout data set. When evaluated with independent, but also sampling-biased 
test data, correction for sampling bias led to improved predictions. The predictive 
performance of the three modelling algorithms was very similar. Elastic-net models 
have intermediate performance, with slight advantage for GLMs on cross-validation 
and Maxent on hold-out evaluation. Model-based bias correction is very useful in data-
sparse situations, where detailed data are not available to apply other bias correction 
methods. However, bias correction success depends on how well the selected bias 
variables describe the sources of bias. In this study, accessibility covariates described 
bias in our data better than the effort covariate, and their use led to larger changes 
in predictive performance. Objectively evaluating bias correction requires bias-free 
presence–absence test data, and without them the real improvement for describing a 
species’ environmental niche cannot be assessed.

Introduction

Species distribution data often come in the form of presence-only, with information 
on where species have been recorded, but no reliable information on where they have 
not, or where people have looked (Pearce and Boyce 2006). Museums, herbaria, per-
sonal collections, published literature, and citizen records are valuable sources for 
presence-only data (Pearce and Boyce 2006, Newbold 2010), especially in developing 
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countries where there is a lack of systematic nation-wide 
surveys. Some initiatives make such species sightings freely 
available: GBIF (the Global Biodiversity Information Facility 
– ! www.gbif.org ") collates global biodiversity data from 
different sources. One fundamental problem is that data are 
often incidental with no information on the sampling efforts 
and survey method used (Pearce and Boyce 2006). They are 
biased taxonomically (towards larger, easy to detect, or more 
charismatic species groups; Newbold 2010), environmentally 
(less collection effort in areas with harsh environments), tem-
porally (more in summer than winter), and spatially (near 
populated places, roads, research institutes and protected 
areas; Phillips et al. 2009, Newbold 2010, Stolar and Nielsen 
2015). For example, GBIF-data show huge differences in 
data contribution among countries (Supplementary material 
Appendix 1 Fig. A1; on average, more from well-financed 
than from species-rich countries). Spatial bias is a particular 
concern for statistical analysis when it leads to environmen-
tal bias (Phillips et al. 2009), e.g. when large parts of the 
environmental space remain unsampled (Merow et al. 2014).

Species distribution models (SDMs) relate species 
occurrences to the environment to estimate habitat pref-
erence, and predict potential distribution and responses 
to climate change (Phillips and Dudík 2008, Elith et al. 
2011). Statistical analyses of presence-only data describe the 
environment at record locations relative to the background 
environment, making them more susceptible to sampling 
bias than presence–absence data from dedicated surveys 
(Phillips et al. 2009, Fithian et al. 2015). However, such 
targeted survey-data are rare (Pearce and Boyce 2006), espe-
cially in developing countries, explaining why the majority 
of SDM applications uses presence-only data. Presence-only 
data may produce sound models if they are efficiently cor-
rected for sampling bias (Elith et al. 2011). Point-process 
models (PPM) have recently emerged as the most appropri-
ate technique for presence-only data (Renner et al. 2015). 
PPMs do not use background points as pseudo-absences (as 
in the naïve logistic regression; Fithian and Hastie 2013), but 
rather as quadrature points for estimating the spatial integral 
of the likelihood function, and hence require careful tuning 
of its number (for details see, Warton and Aarts 2013). The 
response variable of PPMs is the density of species records 
per unit area (also called ‘intensity’), which should be pro-
portional to the probability of occurrence (which can not be 
estimated empirically using presence-only data without addi-
tional information; Fithian and Hastie 2013, Renner et al. 
2015, Phillips et al. 2017). It is mathematically equivalent 
to methods already commonly used in ecology, e.g. Maxent 
and some implementations of the generalised linear model-
ling framework, but differently efficient (Renner and Warton 
2013, for details, Renner et al. 2015).

Sampling bias has been addressed by ‘spatial filtering’ of 
presence locations (keeping only a limited number of records 
within a certain distance) to dilute the effect of uneven 
sampling effort across the study area (Anderson and Raza 
2010, Boria et al. 2014). Alternatively, others effectively 

use location of records from related species as background 
points to have background points with the same bias as the 
species records (Elith and Leathwick 2007, ‘target-group 
background’: Phillips et al. 2009, see also, Ponder et al. 2001, 
and ‘weighted target group’ presented in Anderson 2003). 
Neither approach is applicable when there are only few data 
(a typical case in developing countries). For example, to 
apply the target-group background approach to model the 
distribution of a bat species in North Africa, all GBIF bat 
species records (Supplementary material Appendix 1 Fig. A2) 
are clearly not enough to serve as representative background 
points in this large study area. Similar to the target-group 
background, if the pattern of sampling bias is known a pri-
ori, it can be used as prior weight for sampling the back-
ground proportionally to the sampling effort (e.g. ‘bias file’ 
in Maxent; Phillips and Dudík 2008, Warren et al. 2014), so 
that both presences and background samples have the same 
bias (see also, Stolar and Nielsen 2015).

As a third strategy, sampling bias can be addressed also 
by modelling the distribution of the focal species as a func-
tion of two additive covariate sets: the environmental covari-
ates and other covariate(s) describing potential sources of 
sampling bias, hereafter ‘bias covariates’ (model-based bias 
correction; Warton et al. 2013). For unbiased predictions, 
the bias covariates are set to a common level of bias, say 0, at 
all locations; however, sometimes it is difficult to settle on a 
meaningful adjustment level (Warton et al. 2013). 

The aim of this paper is to address the problem of sam-
pling bias in data-sparse situations and how to correct for it in 
presence-only SDMs. We apply model-based bias correction, 
comparing two different sets of bias covariates to model the 
distribution of Egyptian bat species in areas of their known 
global distributions. Bias-models for each of three model-
ling techniques within the PPM framework are calibrated 
with information on either accessibility or sampling effort 
and compared to an ‘environment-only model’. To maintain 
a reasonable degree of independence between training and 
testing datasets, we evaluated the models using a) entirely 
independent presence-only data (not used to fit any of the 
models); and b) spatial-block cross-validation.

Material and methods

Species and study area

We are interested in understanding the environmental pref-
erences of Egyptian bats as an example representing the 
sampling-bias issue in data-sparse situations. We collected 
records for the entire range of each species (Supplementary 
material Appendix 1 Fig. A2, latitude: –35° to # 56° and 
longitude: –20° to # 80°) from the literature and GBIF 
(see Supplementary material Appendix 2 for list of litera-
ture sources). Although GBIF provides a valuable source 
of data, such opportunistically compiled data bases inevi-
tably contain misidentified or incorrectly georeferenced 
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records (Gaiji et al. 2013), and thus require careful revision 
before use. Relevant records from the GBIF database were 
assessed (October 2014) and merged with the available lit-
erature records. Bat records from Egypt were mostly taken 
from the expert-revised BioMAP (Biodiversity Monitoring 
and Assessment Project) database (Basuony et al. 2010). 
Only species with enough presence locations that are 
located in at least 5 larger spatial blocks were included in 
this study (allowing model evaluation on spatial-block cross-
validation; see below). This was fulfilled by 21 species, each 
occupying " 20 unique cells at resolution of 5 $ 5 km2  
(Table 1). The geographical range of records was assessed 
(based on the literature and IUCN), and spatial outliers were 
excluded. The coverage of all available records shows obvious 
signs of spatial bias towards western Europe and only sparse 
sampling in Africa and western Asia (Supplementary material 
Appendix 1 Fig. A2). Presence locations were purposefully 
split into training and testing data, using only records from 
outside Egypt’s boundaries for training, thereby keeping the 
Egyptian presence data as entirely independent evaluation 
data. For sampling of background points, however, Egypt 
was not excluded from the study area, and hence background 
points can be sampled from Egypt as well (see Fig. 1 for a 
flowchart of the methods applied).

The determination of the study area is critical, especially 
for presence-only models (Pearce and Boyce 2006). We 
decided against a single fixed large study area that covers 
presence locations of all 21 species to keep only areas of 
potential accessibility to the bats (Barve et al. 2011) and 
avoid inflating the discrimination ability of the model  

(e.g. higher AUC; Barve et al. 2011). Instead, for each 
species, the study area was determined based on the geo-
graphical extent of the records: a rectangular bounding box 
containing a 1000 km buffer around the species extent of 
occurrence (see Supplementary material Appendix 1 Fig. A3  
for an example). We used a buffer of 1000 km, as we found 
it suitable for the study species ‘bats’, which have, on aver-
age, high dispersal ability and large home range. Poten-
tial covariates (and species presences) were projected into 
Mollweide equal-area projection and rasterised to a resolution 
of 5 $ 5 km2. We assessed potential environmental variables 
for multi-collinearity, and assembled a final list of covariates 
with a maximum generalized variance inflation factor value 
less than 3 (for details see Supplementary material Appendix 
3 and Supplementary material Appendix 1 Fig. A4).

Block cross-validation

Cross-validation is commonly used for evaluating model per-
formance when no independent data are available. Random 
splitting does not guarantee spatial independence due to spa-
tial autocorrelation (both training and testing data will be 
spatially adjacent), and so may overestimate model perfor-
mance (Bahn and McGill 2013, Radosavljevic and Anderson 
2014). To maintain independence between folds and improve 
transferability of models, a spatial form of cross-validation 
was used by splitting the study area into coarse checker-
board blocks, and then distribute blocks randomly into folds 
(Fithian et al. 2015). We performed 5-fold spatial-block cross-
validation (hereafter: cross-validation). The larger the block 

Table 1. List of Egyptian bat species used in this study, with total number of records available, number of unique records (in parentheses: the 
number of records used to train the model on cross-validation/those kept aside for independent evaluation, i.e. ‘Egyptian records’), number 
of occupied grid cells at the resolution of 5 $ 5 km (number of cells outside/inside Egypt), and best estimated number of background points 
used to run the DWPR-GLM and elastic-net models. See main text and Supplementary material Appendix 1 Fig. A5 for more details.

Species No. records (total) No. records (unique) No. occupied cells
No. background 
points ($1000)

1 Asellia tridens (trident leaf-nosed bat) 414 339 (238/101) 285 (209/76) 300
2 Barbastella leucomelas (Sinai barbastelle) 50 41 (32/9) 34 (28/6) 75
3 Eptesicus bottae (Botta’s serotine bat) 99 80 (64/16) 74 (61/13) 300
4 Hypsugo ariel (fairy pipistrelle) 58 54 (21/33) 45 (21/24) 300
5 Nycteris thebaica (Egyptian slit-faced bat) 939 840 (789/51) 741 (704/37) 300
6 Nycticeinops schlieffeni (Schlieffen’s bat) 122 109 (107/2) 103 (101/2) 300
7 Otonycteris hemprichii (Hemprich’s long-eared bat) 222 166 (127/39) 149 (115/34) 150
8 Pipistrellus deserti (desert pipistrelle) 35 21 (15/6) 20 (15/5) 150
9 Pipistrellus kuhlii (Kuhl’s pipistrelle) 2074 1840 (1751/89) 1646 (1574/72) 200

10 Pipistrellus rueppellii (Rueppell’s pipistrelle) 113 94 (86/8) 83 (75/8) 100
11 Plecotus christii (desert long-eared bat) 110 88 (24/64) 72 (23/49) 75
12 Rhinolophus clivosus (Arabian horseshoe bat) 150 103 (53/50) 85 (48/37) 300
13 Rhinolophus hipposideros (lesser horseshoe bat) 5313 5288 (5274/14) 3395 (3383/12) 300
14 Rhinolophus mehelyi (Mehely’s horseshoe bat) 424 413 (404/9) 375 (368/7) 150
15 Rhinopoma cystops (lesser mouse-tailed bat) 132 96 (52/44) 80 (50/30) 200
16 Rhinopoma microphyllum (greater mouse-tailed bat) 283 237 (214/23) 212 (194/18) 200
17 Rousettus aegyptiacus (Egyptian fruit bat) 1046 874 (766/108) 702 (633/69) 200
18 Tadarida aegyptiaca (Egyptian free-tailed bat) 150 141 (131/10) 135 (126/9) 300
19 Tadarida teniotis (European free-tailed bat) 1335 1308 (1284/24) 1151 (1131/20) 150
20 Taphozous nudiventris (naked-bellied tomb bat) 278 216 (170/46) 193 (158/35) 100
21 Taphozous perforatus (tomb bat) 226 203 (161/42) 186 (150/36) 200
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size, the higher is the need for more data to be able to run 
models on spatial-block cross-validation. We used blocks of 
100 $ 100 km2 (20 $ 20 cells), which is not very strong, as 
we find this more appropriate for the available data. Presence 
and background locations within each block were used 
together for model training or testing: for the three modelling 
algorithms, potential background locations of the left-out 
cross-validation fold were not used (masked) during model 
calibration and were used exclusively for evaluation (similar to 
‘masked geographically structured approach’ of Radosavljevic 
and Anderson 2014, see also Fig. 7 in Fithian et al. 2015). For 
each species, we used a different blocking structure, balancing 
the number of available presences between folds and avoid-
ing extrapolation in environmental space (for more details see 
Supplementary material Appendix 4). 

Sampling-bias models

We compared models without bias correction (environment-
only model, our reference) with two methods of addressing 
bias. Firstly, we considered human accessibility as the main 
source of sampling bias and ran SDMs with additional bias 
covariates describing ‘distances to nearest cities, roads and 
protected areas’ (the ‘accessibility model’). For bias-free pre-
dictions, we set all distances to zero; thus, a bias-free prediction 
can be interpreted as the relative intensity of the target species 
records if all locations across the study area had perfect acces-
sibility (Warton et al. 2013). Second, assuming relative effort 
is the main source of sampling bias, we incorporated a single 
bias covariate describing the ‘relative intensity of sightings of 
all bat species’ (the ‘effort model’). This sampling-effort bias 
covariate was actually the prediction from a (different) all-
bats-model, which predicted the number of all records as a 
function of non-environmental variables (terrain roughness, 

distance to cities, distance to main roads, human population 
density, protected area – details in Supplementary material 
Appendix 5 and Fig. 1 bottom-right). For bias-adjusted pre-
dictions, the sampling-effort covariate needed to be set to 
a common level, for which there is no obvious choice. We 
therefore adjusted it to either of two values of sampling effort: 
the maximum fitted value at the target species’ training pres-
ence locations, and at zero. In the first case, the bias-adjusted 
prediction can be interpreted as the relative intensity of spe-
cies reporting if all the study area receives the sampling effort 
of the best presence location of the target species. In the 
second case, the bias-adjusted prediction is independent of 
effort, and the effort covariate is used only to correct the coef-
ficients of the environmental variables. Although the latter 
value seems simpler, the predicted values lack intuitive inter-
pretation. As the results were very similar, we here only use 
the maximum fitted value at training presences.

Modelling algorithms

For each sampling bias model (environment-only, accessi-
bility and effort), we employed three modelling algorithms 
under the PPM framework with cross-validation and adjust-
ment for model complexity: GLM, elastic net, and Maxent. 
Both GLM and elastic net model the number of records 
as a Poisson regression, with elastic net including a mix-
ture of lasso and ridge regularisation (shrinkage; L1- and 
L2-regularisation, respectively; Friedman et al. 2010). Max-
ent (ver. 3.3.3k; Phillips and Dudík 2008) is a machine-
learning algorithm for presence-only data, effectively and 
mathematically akin to a Poisson GLM, but with different 
functional forms for the predictors; it also applies an ad-hoc 
form of lasso regularisation (Renner and Warton 2013). We 
used GLM and elastic net to implement a ‘down-weighted 

Figure 1. Flowchart of analyses in this study, illustrated with data for Asellia tridens. Sampling-bias models and modelling algorithms were 
combined factorially. Only results for validation with AUC are presented in the manuscript, while TSS-results are given in the Supplemen-
tary material.
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Poisson regression’ (DWPR, following Renner et al. 2015). 
This approach uses weights to make the number of pres-
ences a negligible proportion of all data and scales the data 
to the actual area. As a consequence, DWPR estimates 
model parameters including the intercept. A small weight 
(10–6) was assigned to presence locations, while background 
points were given a higher weight equal to the area of the 
study region divided by the number of background points 
used. 

To estimate the appropriate number of background points 
(for GLM and elastic net), 25 repeated series of DWPR-
GLMs were run, each one progressively increasing the num-
ber of randomly sampled background points. We used the 
number of background points at which the log-likelihood 
asymptoted (Supplementary material Appendix 1 Fig. A5; 
Renner et al. 2015). For both GLM and elastic-net mod-
els, 1) we included linear, quadratic and 1st-order interac-
tions between variables; 2) no interactions were allowed 
between the environmental and bias covariates (Warton et al. 
2013); 3) we standardised all covariates to a mean of zero 
and standard deviation of one. For GLMs, a random sample 
of background points (number estimated from the asymp-
toted log-likelihood curve) was used to run an initial model. 
The initial model was then simplified using AIC-informed 
backward stepwise selection and the remaining variables were 
used to cross-validate the final models.

Running elastic net (R package glmnet; Friedman et al. 
2010) requires tuning of two parameters, α (describes the 
balance of ridge and lasso) and λ (degree of regularisation; 
for more details see, Hastie et al. 2009). For each species 
and bias manipulation, we estimated the best combination 
of α and λ by 5-fold cross-validation of 11 models (α rang-
ing from zero to one with an increment of 0.1). For each 
model, the optimal λ value was determined by fitting a series 
of cross-validated models to a range of λ values (‘regularisa-
tion path’; by default 100 values estimated from the data) and 
the λ value that showed the minimum mean cross-validated 
error was used for predictions. Similarly, the α value with the 
lowest error (Poisson deviance) was selected (Supplementary 
material Appendix 1 Fig. A6). To report the performance of 
the elastic net (and for comparisons with the results of other 
techniques), the selected values of α and λ were used to run 
the cross-validation models manually. Due to the computa-
tional limitation of explicitly using a user-defined λ during 
model training (stated by glmnet help page), models were 
fitted without providing a λ-value, allowing the fit of many 
models over the regularisation path. For prediction we used 
the optimal λ-value estimated from cross-validation. The 
best-estimated values of α are shown in Supplementary mate-
rial Appendix 1 Table A2. Lasso (α = 1) rather than ridge was 
chosen for almost half of the species in environment-only and 
accessibility models. For the effort model, only three species 
had ridge models (α = 0) and all others had α-values ! 1.

Maxent default settings were adapted according to advice 
in the literature (Merow et al. 2013, Radosavljevic and 
Anderson 2014). Maxent, by default, uses combinations 
of feature classes (transformations of covariates: linear ‘L’, 

quadratic ‘Q’, hinge ‘H’, threshold ‘T’, and product ‘P’) 
depending on the number of presence locations available, 
allowing for complex species–environment relationships 
(Phillips and Dudík 2008). We adapted functions from the 
‘ENMeval’ package (Muscarella et al. 2014) to run Max-
ent models on cross-validation at different complexity levels 
and feature class combinations (48 models = 8 regularisation 
multiplier values ranging from 0.5 to 4 with increment of 
0.5 $ 6 feature class combinations [L/LQ/H/LQH/LQHP/
LQHPT]). The default number of background points used by 
Maxent (10 000) is insufficient to represent the environmen-
tal variability in large study areas as used here (Renner and 
Warton 2013), and hence all potential grids were considered 
as background points. We used clamping while predicting to 
the left-out fold, meaning that if any value of a covariate is 
beyond its training range, these values will be replaced by 
the closest value during training (Anderson and Raza 2010). 
For each species and bias manipulation, the combination of 
regularisation multiplier and feature class that shows the high-
est mean testing-AUC (on cross-validation) were selected for 
predictions. The optimum combinations of Maxent’s feature 
classes and regularisation multiplier are shown in Supple-
mentary material Appendix 1 Table A1. The selected feature 
classes deviated from Maxent’s default: 10 species always had 
simple features (L/LQ) for all bias manipulations, with the 
effort model showing more complex features in some cases. 
Moreover, the best-estimated regularisation multiplier also 
deviated from the default value of one, with many species 
having values " 1, indicating little overfitting.

Model evaluation

We evaluated the models using threshold-independent (the 
area under the ROC curve, AUC) and threshold-dependent 
(true skill statistic, TSS) metrics. We tried to avoid some of 
the metrics’ known caveats through 1) the use of species-
specific study areas; 2) block cross-validation minimising 
environmental extrapolation; and 3) using the same block-
ing structure to run different modelling techniques and bias 
manipulations of the same species. 

In presence-only SDMs, presences comprise only a tiny 
fraction of the background. During evaluation, the use of 
too many background points with equal weights for commis-
sion and omission error can distort the evaluation (Lobo et al. 
2008). To be able to compare AUCs (computed using the 
‘dismo’ R package) among models for the same species, we set 
the numbers of test presences and random test background 
(test data prevalence) to a ratio of 1:20, and repeated this 
100 times to average stochastic effects. TSS was calculated 
using the threshold that maximises the sum of sensitivity and 
specificity (Liu et al. 2013), again using a constant ratio of 
presences and background. AUC and TSS were calculated for 
each combination of species, algorithm and bias manipulation.

We summarised the overall effect of different bias manip-
ulations in two ways, using linear mixed-effect models 
(R-package lme4; Bates et al. 2015). Firstly, to evaluate the 
effect of incorporating bias covariates into the model, we 
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compared evaluation of the environment-only models (with-
out any bias correction) to those of bias-accounted models 
(accessibility and effort) without conditioning on a particu-
lar value of the bias covariate during prediction (modelling 
evaluation). Second, to explore the effect of bias correction 
on model evaluation, we performed similar comparisons, 
with bias-free predictions of the bias-accounted models 
instead (bias correction evaluation; for details see Supple-
mentary material Appendix 6). We expect models incorpo-
rating the impact of bias to outperform (signified by a higher 
AUC or TSS) those that do not. The problem is that we do 
not have bias-free data, and therefore our test data exhibit 
the same bias as the data used to create the model. Under 
these circumstances, models allowing for bias may be worse 
than those that do not. In either case, the difference between 
bias-corrected and control models is a measure of the impact 
of bias. In the mixed models, we used model evaluation as 
response variable, species as random effect, and model type, 
bias correction (and their interactions), total number of 
training presences, and total number of pixels at per-species 
study area (range size) as fixed effects (for more details, see 
Supplementary material Appendix 6).

Results

Validation by block cross-validation vs by Egypt  
hold-out

The overall mean AUC is 0.88 % 0.08 on cross-validation 
(0.75 % 0.13 in Egypt’s evaluation; Fig. 2–3). Because 
results for AUC and TSS were similar, we present only 
results for AUC (Supplementary material Appendix 1  
Fig. A11 and supplement for TSS). Model evaluations in 
Egypt were, on average, poorer than on cross-validation. 
However, both types of evaluation (using ‘bias-corrected’ 
predictions) show positive correlation (Kendall’s tau; n = 21, 
Supplementary material Appendix 1 Fig. A7), with highest 
consistency for the accessibility model. As expected, species 
with fewer occupied cells tend to have higher evaluation vari-
ability (uncertainty), and hence provide less robust analyses 
(Supplementary material Appendix 1 Fig. A9–A10).

Effect of bias corrections: mixed-effect model analysis 
across species and model types

Sampling-bias model explained most of the variation in 
model validation, followed by the modelling algorithm, and 
their interaction (Fig. 2 and Supplementary material Appen-
dix 6.1). The total number of training presence (positive 
effect) and the range size (negative effect) were much less 
important. On average, the accessibility model performed 
much better than environment-only and effort models  
(Fig. 2 and Supplementary material Appendix 6.1). For mean 
cross-validations, effort models also had relatively higher 
AUCs than the environment-only model (the difference is 
much smaller for elastic net and GLM; Fig. 2a). However, 

for validation in Egypt, effort models were similar to the 
environment-only model (Fig. 2b, see also Supplementary 
material Appendix 6.1). 

We can also evaluate the performance of the sampling-
bias models when their bias covariates are set to a fixed 
value, i.e. when predicting to bias-free data. However, 
since we have no reference survey data to compare them 
to, these predictions reveal the impact of bias-correction 
on the model, rather than assess the model’s performance. 
These evaluations are presented in Fig. 3 and Supplementary 
material Appendix 6.2.

Effect of model type

The predictive performance of the three modelling algorithms 
showed fair to moderately high correlation coefficient (most 
r " 0.6, all significant; Fig. 4). For mean cross-validation 
evaluations, GLM performed best, followed by elastic net 
and Maxent. The order is reversed for independent valida-
tions in Egypt: Maxent has highest AUC-values, followed by 
elastic net, then GLM (Fig. 2–4, and Supplementary material 
Appendix 6).

Discussion

Sampling bias, if not corrected for effectively, can substan-
tially affect the predicted intensity and model evaluation 
of SDMs. Our results suggest that accessibility bias covari-
ates describe the bias in our focal species’ training data well, 
compared to sampling efforts, and their use led to higher 
validation scores. Evaluated on data that are themselves spa-
tially biased, we find that removing sampling bias did not 
improve the predictive performance on cross-validation or in 
Egypt (Fig. 3), highlighting the limitation of evaluating bias 
correction without independent bias-free presence–absence 
data. Collectively, the three modelling algorithms performed 
similarly well in cross-validation, though predicting to 
new sites (Egypt) gave Maxent a slight advantage (Fig. 2b  
and 3b). 

Sampling-bias correction using presence-only data

Few approaches exist to correct for sampling bias, some not 
applicable when data are sparse. Spatial filtering (i.e. aggrega-
tion to single records within some larger buffer: Anderson 
and Raza 2010, Boria et al. 2014) might be wasteful when 
only few presences exist. Removal of clumped data will 
reduce training sample size and may remove some of the 
environmental conditions occupied by the species (depend-
ing on the heterogeneity of the landscape, selected distance, 
and pixel size).

Target-group background selection strictly assumes 
that related species were collected with the same method 
and equipment (Phillips et al. 2009), bias is similar across 
species (Warton et al. 2013), and species have the same 
chance of being recorded in all locations (Yackulic et al. 
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2013). Moreover, it replaces the observer bias with a  
(spatial) species-richness bias and can be understood 
as modelling the likelihood of encountering the target 
species rather than a non-target species (Warton et al. 
2013, Warren et al. 2014). Also, it does not distinguish 
between areas unsuitable for any of the species and areas 
of low accessibility (no records, but potentially suitable:  
Warren et al. 2014, Fithian et al. 2015). The target-group 
background cannot be used when data on the related 

species are similarly limited, as this increases the risk of 
extrapolating in environmental space (Mateo et al. 2010, 
Merow et al. 2013).

Bias layers attempt to describe with which biases presence 
locations were recorded (Phillips et al. 2009, Warton et al. 
2013). Our external sampling-effort model (Fig. 1 bottom 
right) is such an attempt to derive a bias layer (Elith et al. 
2010). The bias layer is currently only implemented in 
Maxent, and we are not aware of any study that applied a 

Figure 2. Mean AUC of each species calculated either on 5-fold spatial block cross-validation (a) or in Egypt (b). Each plot compares 
evaluation of environment-only models to bias-accounting models (effort and accessibility), without correcting for sampling bias (Model-
ling evaluation; Supplementary material Appendix 5.1). Each species is represented by different symbols (see Supplementary material 
Appendix 1 Fig. A7 for species names). Red lines indicate overall mean AUC for each modelling algorithm and bias manipulation applied. 
For evaluations of bias-free prediction, see Fig. 3.
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similar approach using other modeling algorithms. To main-
tain consistency of the analyses across different modelling 
algorithms we did not consider using a bias layer here. Both 
bias layer and target-group are used to sample background 
with the same bias as presence locations, which is a sensitive 
tuning step that strongly influences model evaluation (Che-
faoui and Lobo 2008). We think that model-based bias cor-
rection, as applied here, is more plausible in data deficient 
situations and if applied efficiently, it frees us from artificially 
manipulating presences or background points, and rather 
focus on sampling bias correction. The effectiveness of bias 

correction depends on whether bias covariates are actually 
able to describe the bias in the available data.

Our use of either accessibility or sampling effort bias 
covariates did not lead to notably different conclusions  
(Fig. 5). Using sampling-effort bias covariate led to, on 
average, little to moderate evaluation changes (Fig. 2–3). 
It is in fact a model-based version of the target-group 
background approach, without strict selection of the back-
ground data points. The assumption that closely related spe-
cies have similar bias may not hold. Surprisingly, most of 
the available presences of our focal species were located in 

Figure 3. Species mean AUC calculated either on cross-validation (a) or in Egypt (b), after sampling bias correction (using bias-free predic-
tion; for details, see Supplementary material Appendix 6.2). Each species is represented by different symbols (see Supplementary material 
Appendix 1 Fig. A7 for species names). Red lines indicate the overall mean AUC at each modelling algorithm and bias models applied.
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areas of low to moderate estimated efforts (Supplementary 
material Appendix 1 Fig. A13), but still strongly biased 
towards roads and cities (and, to less extent, protected areas; 
Supplementary material Appendix 1 Fig. A13). 

Ideally, evaluating bias correction requires independent 
‘bias-free’ presence–absence testing data (Phillips et al. 
2009). Such data are typically not available, especially in 
developing countries, and removing bias from test data is 
very difficult (Dudík et al. 2005, Smith 2013). On aver-
age, validation of bias-corrected predictions using well-
structured, independent presence–absence data from 
rigorous surveys led to improved predictions (Elith and 
Leathwick 2007, Phillips et al. 2009, Mateo et al. 2010, 
Syfert et al. 2013, Warton et al. 2013, Boria et al. 2014). 
However, this improvement is not happening in all situ-
ations and depends on the modelling conditions, species 
prevalence, validity of assumptions, and how effective 
bias covariates are in describing bias in training presences 
(Phillips et al. 2009, Warton et al. 2013, Fourcade et al. 
2014). As covariates that affect sampling may also affect the 
distribution of a species (e.g. avoiding deserts), no method 
can fully correct for sampling bias in presence-only data 
without affecting the niche model (Merow et al. 2014, 
Guillera-Arroita et al. 2015).

Correction of sampling bias leads to larger areas of suitable 
habitats due to higher suitability estimates in low-accessible 
sites (Phillips et al. 2009, Warton et al. 2013; Fig. 5). 

Predictions at such sites are of lower reliability and should be 
interpreted with caution (Supplementary material Appendix 1 
Fig. A16 for an example). They can be used to guide future 
surveys and conservation planning, but not for taking serious 
conservation decisions (Guisan et al. 2006).

Evaluations using spatial-block cross-validation vs 
Egyptian hold-out

We used spatial-block cross-validation to avoid overesti-
mating model performance and underestimating predic-
tive errors (Bahn and McGill 2013, Renner et al. 2015,  
Roberts et al. 2017). Block cross-valuations suggested a bet-
ter model performance than evaluation on Egyptian data. 
This can be explained by differences in sample size and by 
environmental variability: on average, our cross-validation 
models had a larger mean number of testing presences and 
higher environmental variability compared to evaluations at 
smaller scale (Table 1). However, evaluations at both scales 
were positively correlated, which supports the idea that evalu-
ations on cross-validation (larger extent) can be indicative of 
performance at the local scale.

Evaluation metrics and predictive performance

Using AUC and TSS led to consistent conclusions. The 
overall evaluation scores are fair to high, taking into account 

Figure 4. Kendall’s correlation of the per-species mean AUC between pairs of modelling algorithms. Each species is represented by different 
symbols (see Supplementary material Appendix 1 Fig. A7 for species names) with colours referring to bias models (using predictions of 
environment-only model and bias-free prediction of accessibility and effort model). ‘M’ indicates the overall mean evaluation. Top row 
panels are mean evaluation using spatial block cross-validation, while those in the bottom row are independent evaluations in Egypt.
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that spatially independent evaluation yields lower scores 
compared to commonly used random split (Radosavljevic 
and Anderson 2014). In presence-only SDMs, the use of a 
particular value for defining good models become unreliable 
(Yackulic et al. 2013), due to higher uncertainty of estimates 
at background points and as the number of background 
points used is not fixed. In this study, we maintained constant 
test-data prevalence (1:20) across all comparisons, which 
gave very similar results, across all species, to the standard 
default approach of computing AUC (Supplementary mate-
rial Appendix 1 Fig. A14). For some species, the spread over 
the 100 repetitions was very noticeable, however, making our 
approach somewhat more robust. The improved predictive 
performance reported by Syfert et al. (2013), for example, 
may be in part attributable to much higher testing preva-
lence. Also in our study, the larger the number of available 
presences and the smaller the study area was, the higher were 
the predictions scores.

Comparison of modelling algorithms 

The three modelling algorithms applied did not lead to dif-
ferent conclusions and their evaluations were highly corre-
lated. Elastic-net models showed intermediate performance 
in all situations. GLM (more specifically: the down-weighted 
Poisson regression (DWPR) with variable selection) had 
the highest evaluation on cross-validation, which may sug-

gest that GLM-DWPR is more powerful with a larger num-
ber of testing presences. However, GLMs predictions in 
Egypt were less nuanced compared to other two modelling  
algorithms (Supplementary material Appendix 1 Fig. A15A, 
for example), which explains why it ranked lowest on the 
Egyptian hold-out.

Maxent had the lowest prediction error on the Egyptian 
data, which suggests its transferability to situations of low 
extrapolation. However, Maxent had the lowest evaluation 
on cross-validation, possibly due to clamping. We applied 
‘clamping’ to constrain the response beyond the training 
range, which changes some of the predicted values. Clamping 
can affect model evaluation (the ranking of the predicted val-
ues) and, while its effect has not been well-explored in the 
literature, it seems to depend on the shape of the response 
curve (at both ends), the importance of the covariate, and 
how much environmental extrapolation occurs. We expect 
the effect of clamping to be small in the Egyptian hold-out 
compared to the cross-validation, due to less extrapolation.

When correcting for bias, no interaction should be 
allowed between bias and other covariates so that, for predic-
tion, the bias can be corrected for without affecting the other 
covariates (Warton et al. 2013). For GLM and elastic net, we 
have full control of the models’ interactions. However, the 
version of Maxent used here (3.3.3k) does not enable users to 
select which interactions to use, and the use of the product 
feature inevitably enables all pairwise interactions. In further 

Figure 5. Mean cross-validated predicted distribution of Otonycteris hemprichii, of different modelling algorithms (rows) and bias models 
(columns). Maps were rescaled to relative intensities between zero and one, as different modelling algorithms do not have the same scale. 
Darker colour indicates higher predicted relative intensity. Blue points (in the top left panel) represents available records used for cross-
evaluation model training. For visualisation, extreme values (" 0.9995 quantile of predicted values) were replaced with their next smaller 
value, as GLM and elastic net are subject to some few extreme predictions (see main text, and Supplementary material Appendix 1  
Fig. A15B for a comparison with unlimited predictions). For predicted maps in Egypt see Supplementary material Appendix 1 Fig. A15A.
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applications, it may be recommended to disable the ‘product’ 
feature class while correcting for sampling bias. However, its 
use here did not lead to different conclusions compared to 
GLM and elastic net, suggesting that bias-suitability interac-
tions were of limited importance. During the reviewing of 
this manuscript, an open-source version of Maxent (maxnet 
R package: Phillips et al. 2017) was released that uses the 
glmnet package for L1-regularization. Maxnet provides flex-
ibility for specifying the interactions to be used, so it is pos-
sible to exclude interactions between environmental and bias 
variables (making them similar to our elastic-net models, but 
with more flexibility for other feature classes implemented in 
Maxent, e.g. the hinge). This early version of maxnet imple-
ments an infinitely-weighted logistic regression (IWLR; 
Fithian and Hastie 2013) and only L1-regularization (lasso); 
however, further extensions are possible, e.g. the implementa-
tion of DWPR and elastic net (similar to our elastic-net mod-
els). We implemented the down-weighted Poisson regression 
using both GLM and elastic net. As Poisson models, their 
predictions have no upper bound and may thus yield extreme 
predictions. We reported the existence of a few extreme pre-
dicted intensities for many species, which makes it difficult 
to plot their predictions on a linear scale (see Fig. 5 and Sup-
plementary material Appendix 1 Fig. A15B for an example). 
In contrast, Maxent puts a constraint on the moments of 
the predictions, making them less subject to extreme values 
(Phillips et al. 2006).

Conclusion

Data-sparse regions pose challenges to modelling species 
distributions, exacerbated by noticeable sampling biases. 
We recommend the use of model-based bias correction 
in data-sparse situations, in which other bias corrections 
methods are not possible; however, the effectiveness of bias 
correction depends on whether bias covariates are actu-
ally able to describe the bias in the available data. Using 
covariates to describe site accessibility improved predic-
tion to spatially independent hold-outs, compared to envi-
ronment-only or effort models. Augmenting local records 
with data from across the species’ range allowed us to make 
consistently high-quality predictions to hold-out data from 
an entire country (in this case Egypt). Bias-free predic-
tions can enhance future conservation planning and tar-
get future surveys when limited resources are available to  
cover large study areas. However, due to possible lower 
certainty at unsurveyed locations, they should be used cau-
tiously (maps including bias are of use only during model 
cross-validation). Without survey-based presence–absence 
data, no complete evaluation of the quality of bias correc-
tions can be attempted. Down-weighted Poisson regression 
as well as the statistically equivalent Maxent approach led to 
similar results, with more flexibility in the elastic-net mod-
els (e.g. degree of shrinkage, question-led specification of 
non-linear effects and interactions). More important than 
the specific algorithm is to use the point-process modelling 
framework as such.
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