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Abstract
Species distribution modeling (SDM) is an essential method in ecology and conserva-
tion. SDMs are often calibrated within one country’s borders, typically along a limited 
environmental gradient with biased and incomplete data, making the quality of these 
models questionable. In this study, we evaluated how adequate are national presence- 
only data for calibrating regional SDMs. We trained SDMs for Egyptian bat species at 
two different scales: only within Egypt and at a species- specific global extent. We 
used two modeling algorithms: Maxent and elastic net, both under the point- process 
modeling framework. For each modeling algorithm, we measured the congruence of 
the predictions of global and regional models for Egypt, assuming that the lower the 
congruence, the lower the appropriateness of the Egyptian dataset to describe the 
species’ niche. We inspected the effect of incorporating predictions from global mod-
els as additional predictor (“prior”) to regional models, and quantified the improvement 
in terms of AUC and the congruence between regional models run with and without 
priors. Moreover, we analyzed predictive performance improvements after correction 
for sampling bias at both scales. On average, predictions from global and regional 
models in Egypt only weakly concur. Collectively, the use of priors did not lead to 
much improvement: similar AUC and high congruence between regional models cali-
brated with and without priors. Correction for sampling bias led to higher model per-
formance, whatever prior used, making the use of priors less pronounced. Under 
biased and incomplete sampling, the use of global bats data did not improve regional 
model performance. Without enough bias- free regional data, we cannot objectively 
identify the actual improvement of regional models after incorporating information 
from the global niche. However, we still believe in great potential for global model 
predictions to guide future surveys and improve regional sampling in data- poor 
regions.
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1  | INTRODUCTION

Species distribution models (SDMs) are statistical methods that re-
late species information (either presence- only or presence–absence) 
to environmental variables to infer spatially explicit habitat suitabil-
ity. They are being used intensively as a standard tool for estimating 
potential range shifts under climate change, assessing invasion risk, 
locate future survey sites, and conservation planning and prioriti-
zation (Araújo, Alagador, Cabeza, Nogués- Bravo, & Thuiller, 2011; 
Guisan & Zimmermann, 2000; Guisan et al., 2013; Rodríguez, Brotons, 
Bustamante, & Seoane, 2007; Thuiller et al., 2005). Although these 
methods have limitations and uncertainties (Araújo & Guisan, 2006; 
Dormann, Purschke, Márquez, Lautenbach, & Schröder, 2008; Guisan 
& Thuiller, 2005), they constitute the best available tools when not 
much detailed information on the ecology and physiology of the spe-
cies is available (Warren, Wright, Seifert, Shaffer, & Franklin, 2014).

In developing countries, the majority of species sightings are 
scattered, opportunistic, and recorded mainly in museum catalogues, 
personal collections, and the literature. Due to political instability 
and limited funds dedicated to wildlife conservation (amongst other 
reasons), there is no systematic nation- wide sampling scheme for 
collecting biological information in most developing countries. Many 
of these countries do not share their biodiversity data, making them 
highly under- represented at international data depositories, such as 
the Global Biodiversity Information Facility (GBIF), with many more 
records from countries with high GDP (Newbold, 2010). Furthermore, 
data from developing countries are particularly (but not exclusively) 
spatially biased (more records from accessible locations near roads 
and cities) and taxonomically biased (toward larger or charismatic spe-
cies). Spatial bias poses a problem for SDMs, which, in their default 

approach, assume that available presence locations represent a ran-
dom (representative) sample in the environmental/geographical space, 
with no spatial dependencies (Elith et al., 2011; Renner et al., 2015). 
This assumption is hardly ever met due to sampling bias, imperfect 
detectability and spatial auto- correlation (Guillera- Arroita et al., 2015). 
When high sampling bias exists, SDM predictions provide an estimate 
not necessarily of the species suitability, but more of the patterns of 
the sampling effort and detectability (Elith et al., 2011; Yackulic et al., 
2013). Several methods have been proposed to correct for sampling 
bias (e.g., target- group background: Phillips et al., 2009; spatial filter-
ing: Anderson & Raza, 2010; sampling bias predictors: Warton, Renner, 
& Ramp, 2013); however, no method seems to be able to fully correct 
for sampling bias in presence- only data (El- Gabbas & Dormann, 2017; 
Merow et al., 2014).

One of the major challenges of SDM studies is how to determine 
the extent of the study area appropriately. Study area should be ob-
jectively determined to cover accessible areas by the species within 
its known complete range, allowing for wider range of environmental 
variation and extremes occupied by the species (Barve et al., 2011; 
Raes, 2012; Sánchez- Fernández, Lobo, & Hernández- Manrique, 2011). 
However, it is common that study areas are unjustifiably determined 
based on geographical or political borders for regional/local conserva-
tion actions, resulting in models calibrated with a limited range of en-
vironmental conditions that do not capture much of the species’ niche 
and hence is insufficient to describe its environmental tolerance (Raes, 
2012; Titeux et al., 2017). This leads to the truncation of the estimated 
response curves, underrepresentation of areas of suitable habitats, 
and limiting the predictive power of the models (Sánchez- Fernández 
et al., 2011; Thuiller, Brotons, Araújo, & Lavorel, 2004). This is more 
problematic when the aim of the study is to extrapolate beyond the 

F IGURE  1 The distribution of Asellia tridens at spatial (a) and environmental (b) space. The map a shows the species- specific global extent 
of this species, with dots representing the spatial distribution at global (blue) and regional (black) scales. Panel b shows a scatterplot of the first 
two PCA axes of all available environmental covariates within the entire study area. The first two axes account for 94.2% of the environmental 
variation. Blue and black dots are presence locations of the species outside and inside Egypt, respectively; light gray points are pixels without 
any sightings at global scale; dark gray points represent the available environmental space in Egypt. Figure S1 shows equivalent plot for all study 
species together
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training range, either in time or space (Barbet- Massin, Thuiller, & 
Jiguet, 2010; Thuiller et al., 2004), or in situations where available data 
are few, opportunistic, or with high (typically unknown) sampling bias. 
The paucity of available records in developing countries, coupled with 
clear signs of sampling bias and limited local environmental gradients, 
makes it challenging to establish robust SDMs for a variety of taxo-
nomic groups at the national scale.

In this article, we evaluate the adequacy of regional presence- only 
data (in this case from within a developing country’s political borders) 
for constructing SDMs. More specifically, we compare bat occurrence 
predictions from regional and global SDMs for the country of Egypt, in 
many respects exemplary for developing countries. Egypt shows much 
lower environmental variability compared to the global extents of the 
species (see Figures 1 and S1) and comprises only a small proportion of 
available global records. This makes the quality of regional SDMs, that 
is, those built only on the sparse Egyptian data, questionable. Global 
models (at species- specific global range) should in this case be more 
reliable than regional models (in Egypt) in describing the climatic niche 
of species because they are calibrated with a much higher number of 
presences and capture a much wider range of occupied (or, more gen-
erally, accessible) environmental conditions (Pearson, Dawson, & Liu, 
2004). Thus, we evaluate predictions from regional and global SDMs 
for Egypt, arguing that the less similar they are, the more the local data 
describe sampling effort rather than the ecology of bats. Furthermore, 
we investigate how much correction for sampling bias (using bias pre-
dictors, in both regional and global SDMs) helps to improve the local 
predictions for Egypt.

Predictions from global models interpolated to Egypt represent a 
spatial- explicit information on the species potential distribution that 
is independent from regional data available from Egypt, and thus can 
be useful to improve predictions of regional models when used as 
additional predictors (cf. “informative offset”: Merow, Allen, Aiello- 
Lammens, & Silander, 2016). We explore how much global predictions 
(interpolated to Egypt) improve Egyptian regional models when used 
as predictor “prior” to describe the environmental niche (again, with 
and without correcting for sampling bias).

2  | METHODS

2.1 | Study design and species

This study builds on a comparison of methods to correct for sam-
pling biases (El- Gabbas & Dormann, 2017), adding an evaluation of 
regional species distribution models based on national records. We 
collected records for Egyptian bat species (from within Egypt and their 
global extents) from different sources (Appendix S1 and El- Gabbas & 
Dormann, 2017). Four species with fewer than eight unique sightings 
in Egypt were excluded from the analyses, yielding a total of 17 spe-
cies (Table S1). For the selected species, we created regional models 
using presence locations and environmental data only for Egypt (“re-
gional SDMs”). “Regional” refers here to a geographic extent much 
smaller than the range of the species, but of much coarser grain than 
a local dataset. We also created analogous models across the global 

range (“global SDMs”): These models were made for each species- 
specific global extent (a buffered bounding box around all global re-
cords), excluding Egyptian records to maintain independence (and to 
allow for valid comparisons) between the predictions of the regional 
and global models (see below; and El- Gabbas & Dormann, 2017 for 
details). Both scales are nested in geographical and environmental 
space: Our regional models are calibrated within a subset of each 
species- specific global extent. At either scale, we used two modeling 
algorithms under the point- process modeling framework (Maxent and 
elastic net; Renner et al., 2015), with two options on dealing with sam-
pling bias (with and without bias correction), and evaluated the results 
using spatial- block cross- validation (Roberts et al., 2017).

2.2 | Environmental variables

Potential environmental predictors (at the total study area covering 
both scales) and species records were projected into Mollweide equal- 
area projection at a resolution of 5 × 5 km2. Using the same pixel size 
and projection maintains consistency of the analyses between re-
gional and global models (Budic, Didenko, & Dormann, 2016). As the 
correlation between predictors varies from one study area to another, 
different environmental predictor combinations were used at regional 
and global scales. Some predictors were not useful at the regional 
scale, and hence were excluded a priori; for example, precipitation 
of driest month does not show any variability across Egypt because 
most of Egypt receives no precipitation at all in summer, reflecting its 
hyper- arid climate (El- Gabbas, Baha El Din, Zalat, & Gilbert, 2016). We 
ensured minimum multi- collinearity at both scales by selecting only 
predictors that maintain a maximum generalized variance inflation 
factor value less than 3 (see Table S2 for the list of predictors used 
at either scale).

2.3 | Modeling algorithms

We used two modeling algorithms: Maxent and elastic net. Maxent 
(Phillips & Dudík, 2008; v3.3.3k) is a machine- learning presence- 
background SDM algorithm. It outperforms other presence- only 
SDM algorithms, especially at smaller sample sizes (e.g., Wisz et al., 
2008), due to its use of (some form of) lasso regularization. Elastic net 
(Friedman, Hastie, & Tibshiani, 2010) is an extension of GLMs that 
uses “lasso” and “ridge” regularization rather than AIC to select the 
most suitable model, and hence is similarly resistant to overfitting. We 
applied both algorithms under the point- process modeling framework 
following recommendations of Renner et al. (2015), changing some of 
Maxent’s default settings (e.g., to “noautofeature,” “noaddsamplesto-
background,” and “noremoveduplicates”), and used the implementa-
tion of “down- weighted Poisson regression” for elastic- net models. 
For each calibrated model of either algorithm, we adjusted against 
unnecessary complexity (Merow et al., 2014) using five-fold spatial- 
block cross- validation, estimating the best combination of Maxent’s 
feature classes and regularization multiplier based on maximizing the 
mean testing AUC (Muscarella et al., 2014), and the optimum α (which 
describes the balance between ridge and lasso) for elastic net.
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2.4 | Adjusting for sampling bias

In addition to “environment- only” models (without bias correction), 
we use two different methods of predicting from models that incor-
porate bias: “bias- predictor” and “bias- corrected.” In both methods, 
we use sampling bias predictors as our estimate of bias: three lay-
ers describing distances to main roads, cities, and protected areas 
(Warton et al., 2013). Bias- predictor models use the bias layers simply 
as an extra set of predictors, and during prediction also their values 
change. Bias- corrected models try to factor out the bias by setting 
the bias variables to zero (see Warton et al., 2013). The three options 
for sampling bias (none, predictor, and correction) were applied to re-
gional and global models, with bias predictors nested for regional scale 
within the global scale.

2.5 | Model evaluation and the use of spatial priors

We evaluated regional model performance using AUC as a 
threshold- independent metric. Despite the criticism of the use of 
AUC to evaluate the performance of presence- only SDMs (e.g., 
Lobo, Jiménez- Valverde, & Real, 2008), our use of AUC for com-
parisons between models of the same species, predictors, and study 
area is valid (Anderson & Gonzalez, 2011; Wisz et al., 2008). We did 
not use AUC to quantify model performance (goodness of fit), but 
rather as a measure of the relative ranking of predictions at testing 
presence and background locations. We calculated AUC on five-
fold spatial- block cross- validation to maintain spatial independence 
between training and testing data (Fithian, Elith, Hastie, Keith, & 
O’Hara, 2015; Roberts et al., 2017): The same blocking structure 
(how spatial blocks are distributed into cross- validation folds) is 
used for each species, with balanced prevalence among blocks 
and same block sizes, allowing for valid AUC comparisons for the 
same species. The mean value of testing AUC on cross- validation 
is reported.

To quantify the efficacy of Egyptian data to construct SDMs, we 
calculated the geographical congruence (Schoener’s D; Schoener, 
1968; Warren, Glor, & Turelli, 2010) between continuous predic-
tions of the global and regional SDMs for Egypt (scaled to sum to 
one; without and with bias correction). Our assumption is that the 
higher the geographical congruence, the more suitable the Egyptian 
records are to parameterize regional models. When assessing the 
congruence between maps we used all three bias options, while for 
regional comparisons based on AUC we only used the first two mod-
els (environment- only and bias- predictor), due to the lack of bias- free 
testing- data from Egypt required to evaluate bias- corrected predic-
tions. Geographical congruence and AUC gave similar results, indicat-
ing that geographical congruence indeed measured how similarly well, 
not how similarly poorly models predicted.

We then measured the improvement of regional SDMs after 
incorporating a spatial- explicit information on the global climatic 
niche. More specifically, for each species we used predictions from 
the global SDM interpolated to Egypt (i.e., not using the Egyptian 
data, and thus referred to hereafter as “prior”) as an additional 

predictor to create a new set of regional models. We had three 
types of priors representing the predictions of global models for 
Egypt: 1) from the environment- only model, “Priorenv-only”; 2) a 
prediction incorporating the bias layer as a predictor to adjust for 
sampling bias, “Priorbias-predicted”; and 3) a prediction from a model 
that has factored out bias, “Priorbias-corrected”. Modeling algorithms 
were not mixed, that is, global models from Maxent were used 
only for regional models with Maxent, and analogously for elastic- 
net models. We quantified the improvement due to priors in two 
ways. First, we measured changes in model performance (AUC). 
Secondly, we calculated the map congruence between regional 
models’ predictions in Egypt with and without incorporating pri-
ors: the higher the map congruence, the lower the contribution of 
the prior to the regional SDM. One- tailed paired t- test (df = 16) 
was used for comparisons between each pair of modeling al-
gorithms, sampling bias options, and changes in AUC and map 
congruence.

3  | RESULTS

The relative importance of environmental variables (permutation 
importance calculated by Maxent) varied at global and regional 
scales. When incorporated, the accessibility bias predictors at both 
scales had high Maxent permutation importance (particularly, “dis-
tance to cities” was of significantly higher importance than all but 
one variable [p < .05; nonsignificant only for Bio4 at global scale 
and Bio6 at regional scale], and “distance to roads” which had a 
significantly higher average importance than three different envi-
ronmental variables at either scales; Figure 2). Furthermore, the re-
sponse of species to environmental predictors was, unsurprisingly, 
different at both scales. For example, for Eptesicus bottae at the 
global scale, the response to precipitation of the coldest quarter 
increased sharply at low precipitation values (approx. 0–130 mm), 
then remained high or decayed depending on whether the global 
bias predictors were used or not, respectively (Figure S2a). At the 
regional scale, however, the species response was highest at ex-
tremely low precipitation values (around 10 mm), then declined 
sharply (Figure S2c).

3.1 | Global versus regional SDMs

Different areas were identified as suitable in models either using 
data from the full range or just from Egypt, with low geographic 
congruence between the predictions of global and regional mod-
els for Egypt (Figure 3). The incorporation of bias predictors (at 
both scales) did not lead to substantial congruence improvement 
(yet statistically significant; all p < .01). The congruence was high-
est when bias- corrected models were used (statistically higher than 
environment- only and bias- predicted models for Maxent and elas-
tic net, p < .001). Maxent and elastic net yielded similar values for 
congruence, with an advantage of Maxent for bias- predictor models 
(p < .05).
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3.2 | The use of prior information from the 
entire range

The use of priors did not lead to AUC improvement, except when using 
Priorbias-predictor (p < .05; Figure 4a). Results were similar for both Maxent 
and elastic net, with higher AUC values for Maxent (all p < .01). Maxent 
showed relatively low permutation importance of the different prior vari-
ables, except for Priorbias-predictor which had high contributions to the mod-
els (all p < .0001, although also with high variability; Figure S3, left panel).

The incorporation of prior variables as predictors yielded high geo-
graphical congruence between the predictions of regional models with-
out and with priors (Figure 5). However, the congruence values depended 
on the prior used. The use of Priorenv-only or Priorbias-corrected led to high 
congruence, indicating little additional information provided by the pri-
ors. In contrast, when Priorbias-predictor was used, geographical congruence 
was less pronounced (p < .001), suggesting that here information differ-
ent from the regional data entered the model. Both Maxent and elastic 
net produced similar values for congruence, with slightly higher values for 
elastic net when Priorbias-predictor was used (marginally significant; p = .042).

3.3 | Correction of regional sampling bias

When regional bias predictors were incorporated into the SDMs, the 
regional models performed better (higher AUC; all p < .05), leading to a 

negligible effect of priors (Figure 4b). Maxent has relatively higher AUC 
scores than elastic net (all p < .01). However, Priorbias-predictor showed 
equivalently high AUC values whether or not regional bias predictors 
were included (p > .7; see Figure 4a,b for a comparison). This was also 
evident by the much lower permutation importance of prior predictors 
when regional bias predictors were incorporated, with relatively higher 
importance for Priorbias-predictor (all p < .05; Figure S3, right panel).

Incorporating regional bias predictors led to similar patterns of con-
gruence (between predictions of regional SDMs created with or with-
out priors) to those which did not incorporate bias (Figure 5 vs. Figure 
S4, light gray boxes), with relatively lower congruence when Priorbias-

predictor was used. However, bias- correction (factoring out the bias) did 
not affect congruence for Maxent, while much lower congruence val-
ues were observed for elastic net whichever priors were used (Figure 
S4, dark gray boxes). In other words, regional bias correction led to 
less agreement between regional model predictions (with and without 
priors) for elastic net, regardless of which prior variables were used.

4  | DISCUSSION

In this study, we evaluated how much improvement to the regional 
SDMs for Egypt occurs by incorporating additional information (the 
“priors”) representing the global climatic niche from outside Egypt. 

F IGURE  2 Mean permutation importance of environmental variables used at global (left) and regional (right) models (from Maxent). Dots 
and error bars represent the overall mean and standard deviation of the average permutation importance of the seventeen study species, 
respectively. Blue dots/bars represent environment- only models; red dots/bars represent comparable models with accessibility bias variables 
incorporated as predictors. When included, bias predictors have a high contribution (particularly distance to main cities at both scales, and 
distance to roads in Egypt), compared to many environmental variables. For more details on the environmental variables used, see Table S2
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First, without providing information on regional bias (no regional bias 
correction), Priorenv-only and Priorbias-corrected did not lead to improve-
ments in the regional models: Similar AUC values (Figure 4a) and high 
geographical congruence (Figure 5) imply that they do not provide 
new information to the regional models. However, the use of Priorbias-

predictor led on average to higher AUC and lower geographical congru-
ence, signaling that new information was provided to the models. This 
was supported in Maxent models by the higher permutation impor-
tance of Priorbias-predictor, compared to the other two options of priors 
(Figure S3, left panel). On the other hand, when regional bias predic-
tors were incorporated, all models had improved AUC, whether or not 
priors were used (Figure 4b). Regional bias predictors describe the 
local bias existing in the Egyptian dataset, and their use led to higher 
AUC, in accordance with other studies (El- Gabbas & Dormann, 2017; 
Warton et al., 2013). The use of regional bias predictors makes the 
contribution of priors negligible: Priorenv-only and Priorbias-corrected had 
an extremely low contribution to these models, only slightly higher for 

Priorbias-predictor (Figure S3, right panel). Generally, Maxent and elastic 
net led to very similar results, with slightly higher discrimination ability 
for Maxent.

Priorbias-predictor implicitly contains information on the regional bias 
of the records in Egypt, because it represents predictions of equiva-
lent global models calibrated with accessibility bias variables (regional 
bias variables represent a narrower range than their equivalent vari-
ables at global scale). In contrast to bias- free predictions, the use of 
bias variables as predictors gives higher predicted suitabilities at lo-
cations of high accessibility (e.g., closer to roads and cities), which is 
the reason for high AUC scores when evaluation datasets are similarly 
biased (Warton et al., 2013). The available dataset for Egyptian bats is 
spatially-biased, with more records collected near roads and cities (El- 
Gabbas & Dormann, 2017), and hence Priorbias-predictor describes the 
available data better than the other two priors. The relatively modest 
contribution of Priorbias-predictor, and even lower contribution of the 
other two priors, can be understood as the result of the unavailability 

F IGURE  3 Boxplots for the 
geographical congruence (Schoener’s 
D) between mean predictions of global 
and regional models for Egypt (with no 
priors). Schoener’s D ranges from zero to 
one, representing situations of no to full 
congruence, respectively. “Env- only” are 
models calibrated only with environmental 
variables. “Bias- predictor” models add 
accessibility bias variables as predictors to 
the model. “Bias- corrected” models also 
use bias variables to set bias to zero during 
prediction (i.e., bias factored- out)
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F IGURE  4 Boxplots for the mean AUC 
values (on cross- validation) calculated for 
different options of modeling algorithms, 
bias manipulations, and priors. (a) A 
comparison between mean AUC values of 
no- prior regional models and equivalent 
models that use different options of priors 
(without regional bias incorporated as 
predictors). (b) Same as a, with regional bias 
variables included as predictors

F IGURE  5 Geographical congruence between the predictions of regional SDMs calibrated without priors and the three versions of regional 
models that used a prior variable. Bias variables were not incorporated as predictors in the regional SDMs. There were three options of prior 
options: “Env- only” are predictions of global SDMs without incorporating sampling bias; “Bias- predictor” priors incorporate global accessibility 
bias variables as predictors in the model; and “Bias- corrected” priors incorporate bias- corrected (set to zero) predictions from global models for 
Egypt
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of complete, bias- free data from Egypt (see below). Furthermore, 
Priorenv-only and Priorbias-corrected are highly correlated with some other 
environmental variables in Egypt (higher than for Priorbias-predictor), par-
ticularly for Bio19 (precipitation of coldest quarter) and Bio9 (mean 
temperature of driest quarter; Figure S5), and hence to a large extent 
provide redundant information.

The three prior suitabilities show low geographical congruence 
with their corresponding regional predictions in Egypt (Figures 3 and 
S6, e.g., maps), meaning they (global models) identify different sites 
as suitable than do models based on Egyptian records. This can be 
explained by factors related to model misspecification (e.g., the vari-
ables used and violation of model assumptions), the difficulty of mod-
eling widespread species with high accuracy (Stockwell & Peterson, 
2002), the low quality of available data, or species- specific reasons 
(e.g., species plasticity and the existence of ecotypes; Randin et al., 
2006). We exclude environmental extrapolation as a reason for the 
on average low performance of the predictions of the global model 
for Egypt, as we included environmental data for the area of Egypt in 
these models (but not the records), and hence, the predictions are not 
outside the realm of the global model (and hence do not represent an 
extrapolation).

While it is advisable to check for collinearity at training and pre-
diction scales (Elith, Kearney, & Phillips, 2010), it is not always easy 
to maintain a representative set of variables that are uncorrelated at 
both scales. Although we minimized the correlation between environ-
mental variables at global and regional scales to avoid unnecessarily 
high variance in model parameters, the correlation among environ-
mental variables is, inevitably, not constant over space (Dormann 
et al., 2013). Some of the variables used at the global scale have high 
correlation in Egypt, making the reliability of predictions in Egypt less 
stable (Dormann et al., 2013; Elith et al., 2010). Furthermore, the qual-
ity of environmental variables is not constant in space. For example, 
the WorldClim data (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; 
the source of most of the environmental variables used in this study) 
were adroitly prepared using interpolation of data from global weather 
stations. Weather stations are not evenly distributed in space: Climate 
data for areas such as Arabia and the Sahara (including Egypt) are in-
terpolated using very few weather stations with high spatial clustering 
(see figure 1 in Hijmans et al., 2005), and hence, the interpolations 
are of potentially higher uncertainty that can affect the quality of cal-
ibrated models (Phillips, Anderson, & Schapire, 2006). This problem is 
not exclusive to the WorldClim data, but holds for any environmental 
layers derived from spatially-biased weather stations.

The environmental variables used may have been insufficient to 
characterize the species niche (Phillips et al., 2006). It is recommended 
to use proximal predictors (e.g., food sources or suitable roosting sites 
for bats) that directly describe the required resources and physiolog-
ical limits than more indirect distal predictors (e.g., altitude; Austin, 
2007; Merow et al., 2014). The use of proximal variables increases the 
transferability of models in space (Elith & Leathwick, 2009; Franklin, 
2009). However, determining a set of species- specific proximal pre-
dictors is not possible without detailed knowledge of the ecology 
and physiology of each species, either unknown for most species 

(especially for bats) or not yet available at large scales (e.g., abundance 
of prey; Merow et al., 2014; Herkt, Matthias, Barnikel, Skidmore, & 
Fahr, 2016; Petitpierre, Broennimann, Kueffer, Daehler, & Guisan, 
2017). The majority of SDM studies use (the easier to obtain) distal 
variables as surrogates for proximal variables; however, even if distal 
variables can indirectly describe the species requirements, the correla-
tion between proximal and distal variables is not constant in space 
(Dormann et al., 2013; Elith & Leathwick, 2009; Merow et al., 2014). 
Examples of missed variables which can potentially improve model 
transferability for bats include locations of suitable roosting and forag-
ing sites, proximity to water, food sources (Herkt et al., 2016; Razgour, 
Rebelo, Di Febbraro, & Russo, 2016). Regional models were calibrated 
for a limited environmental range (Figure S1), potentially contributing 
to the disagreement between regional and global model predictions.

While excessive model complexity can lead to overfitting to train-
ing data and consequent limited model transferability in space and 
time, we reject overfitting as a reason for the limited usefulness of 
priors. We limited overfitting using regularized modeling approaches, 
calibrated by spatial cross- validation blocks in a way that balances the 
number of presence locations and environmental variability between 
cross- validation folds (avoiding extrapolation) and adequately con-
strains the complexity of (both regional and global) models. That said, 
it is not clear how much model complexity optimization is affected by 
the limited number and quality of records (including sampling bias).

Predictions from global models interpolated to Egypt may well still 
describe the potential distribution of bats in Egypt. Their limited use-
fulness in our study only shows that the global dimension did not add 
new information, given the limitations of the available data from Egypt. 
If unbiased occurrence data were available, global models may indeed 
predict well in Egypt. Moreover, available bat records in Egypt are few 
and spatially-biased toward easily accessible areas, with the majority 
collected from relatively old literature and museum specimens. Most 
are opportunistic data gathered with an unknown sampling strategy 
(see Appendix S1). Due to their nocturnal and elusive behaviour, high 
maneuverability, and the need for specialized bat detectors for effec-
tive recording, it is challenging to obtain high- quality records for bats 
in developing countries (Razgour et al., 2016). Information on their 
geographical distribution is very limited, making bats highly under- 
represented in SDM studies (Herkt et al., 2016; Razgour et al., 2016), 
and Egypt is no exception. Finally, sampling bias can strongly affect 
model quality (Phillips et al., 2009), and while we attempted to correct 
for sampling bias in our models, we cannot quantify the efficiency of 
bias correction without bias- free data for comparison (Phillips et al., 
2009; Warton et al., 2013), unavailable in most presence- only studies, 
especially in developing countries. The results of this study call for im-
proved, systematic sampling of species occurrences in regions where 
currently only biased and scarce data are available.

5  | CONCLUSION

We have shown that the use of global bat data did not improve re-
gional model performance for Egypt. We relate this to the difficulty 
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of calibrating SDMs of widespread species at extremely large study 
areas that cover many biogeographical regions and to data quality is-
sues (mainly the quantity of available data dominated by high sampling 
bias). Due to the lack of high- quality data and limited environmental 
gradients in Egypt, regional SDMs seem to be insufficient to deter-
mine new survey sites (a point also made by Sánchez- Fernández et al., 
2011). Improving the sampling of fauna and flora species from data- 
poor countries (such as Egypt, particularly from the less visited areas) 
would enhance regional SDMs in these countries and consolidate the 
usefulness of these models to discover new populations.

Although our results showed that predictions from global SDMs 
failed to improve regional predictions calibrated with low- quality and 
spatially-biased data, we still believe in great potential for SDMs that 
integrates global and regional data to improve future local sampling 
in data- poor countries like Egypt. Patterns of potential distribution 
(of global models interpolated to Egypt) can guide future surveys 
and help to discover new populations. In our analyses, we excluded 
Egyptian data for creating the global models to maintain consistency 
of comparisons between predictions of regional and global models. 
However, this is not necessary for real applications, and it would seem 
preferable to include regional data in a comprehensive model that 
covers the biogeographical region to improve model predictability. For 
example, to improve sampling of under- reported bat species in Egypt, 
we think that a larger- scale model should be created, with the study 
area determined objectively based on the available data from Egypt 
and adjacent arid areas (e.g., Arabia and the Sahara) in order to meet 
the stationarity assumption (constant species–environment relation-
ships with no change in niche characteristics; Anderson & Gonzalez, 
2011; Dormann et al., 2012) and then crop the prediction maps to 
Egypt. This is of mutual benefit not only for Egypt, but also for target-
ting efforts in the adjacent areas as well, which can help to improve 
the conservation status of some species. However, obtaining enough 
data from adjacent areas will remain challenging for many species.
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